FlexCard.

fcBase APl Documentation

by Eberspacher Electronics.

FlexCard Cyclone Il (3-0009-0S01)
FlexCard Cyclone |l SE (3-0009-0T01)
FlexCard PMC/PCI (3-0033-0P01)

FlexCard PMC I (3-0055-0P01)

Eberspacher

3-0009-0S01-D03_API Documentation_D1V12-F.doc

CONTACT INFORMATION

Eberspacher Electronics GmbH & Co. KG
Robert-Bosch-Str. 6

D-73037 Goppingen, Germany

Phone + 49 7161 9559-0

Phone + 49 7161 9559-222 (Support)
Fax +497161 9559-455

Sales: Ebel-sales@eberspaecher.com
Support: Ebel-support@eberspaecher.com
www.eberspaecher.com/electronics

COMPANY DATA

Eberspéacher Electronics GmbH & Co. KG, registered offices: Gdppingen, register court Ulm, HRA 721096
Partner liable to unlimited extent: Eberspacher Electronics Verwaltungs-GmbH, registered offices:
Goppingen, register court Uim, HRB 722565

Represented by the executive board: Martin Peters, Dr. Leonhard Vilser

“Eberspacher Electronics” represents Eberspacher Electronics GmbH & Co. KG.

COPYRIGHT NOTICE
© Copyright 2009 Eberspacher Electronics GmbH & Co. KG. All Rights Reserved.

No part of this document may be reproduced in any form (photocopy, microfilm or another procedure)
without prior written consent from Eberspacher Electronics.

TRADEMARKS

FlexRay™ is a trademark of the FlexRay consortium.
Any other trademarks used in this document are the property of their respective owners.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 2 of 180

mailto:Ebel-sales@eberspaecher.com�
mailto:Ebel-support@eberspaecher.com�
http://www.eberspaecher.com/�

3-0009-0S01-D03_API Documentation_D1V12-F.doc

DISCLAIMER

The information contained in this document does not affect or change General Terms and Conditions of
Eberspacher Electronics. Eberspacher Electronics does not guarantee the completeness and accuracy of
the content of this document and assumes no responsibility for any errors which may appear in this document
or due to this document. The content of this document or the associated products are subject to change
without notice at any time.

Based on currently state of arts and science it is impossible to develop software that is bug-free in all
applications. Therefore, the product is only allowed to be used in the sense of the product use case
described herein.

Eberspacher Electronics makes no warranty express or implied, as to this document or the information
content, materials or products for any particular purpose, nor does Eberspéacher Electronics assume any
liability arising out of the application or use of this product, and disclaims all liabilities, including without
limitation resulting damages, as permissible by applicable law.

All operating parameters which are provided in this document can vary in different applications or over time.
The herein described product solely is allowed to be used as described in chapter “Intended use”.

Without limiting the rights under copyright, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photocopying, recording, or otherwise), or for any purpose, without the express written consent of
Eberspacher Electronics.

Eberspacher Electronics may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly stated in a written
license agreement from Eberspacher Electronics, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

Any semiconductor devices have an inherent chance of failure. You have to protect against injury, damage
or loss from such failures by incorporating safety design measures into your facility and equipment such as
redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
The safety and handling instructions in this document have to be followed strictly.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 3 of 180

REVISION HISTORY

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Version Date Description

D1VO-F 06-Mar-2006 Initial release

D1V1-F 02-Nov-2006 API functions added and updated. Multicard usage.

D1V2-F 02-Mai-2007 New API functions added and updated. PMC and XENOMAI usage.
D1V3-F 10-Mai-2007 Corrected description and changed Xenomai usage.

D1V4-F |21-Jun-2007 VxWorks API functions added.

D1V5-F 30-Aug-2007 PMC, VxWorks and Linux functions changed and added.

D1V6-F 02-Dec-2007 FlexCard Cyclone Il (SE) support self startup/synchronization.
D1V7-F 28-Jan-2008 Support of CC Timer, API functions added and updated.

D1V8-F 25-Feb-2008 VxWorks chapter updated.

D1V9-F 11-Juli-2008 FlexCard Cyclone Il (SE) support CAN. New API functions added.
D1V10-F |29-Oct-2008 FlexCard PMC/PCI support CAN. New FlexRay API functions added.
D1V11-F | 27-Feb-2009 FlexCard PMC Il support and new API functions added.

D1V12-F | 16-Apr-2009 Corrected description. Linux driver supports FlexCard PMC II.

RELATED FIRMWARE AND HARDWARE VERSIONS (COMMON)

Component

Ref.No., Version

Remarks

FlexCard Cyclone Il Firmware

3-0009-0C04, S5V1-F

Current version

FlexCard Cyclone Il SE Firmware

3-0009-0C05, S5V1-F

Current version

FlexCard PMC Firmware

3-0033-0B01, S5V1-F

Current version

FlexCard PMC Il Firmware

3-0055-0C01, S5V1-F

Current version

FlexCard Cyclone Il Hardware

3-0009-0A04, H1V1-F

Initial version

FlexCard Cyclone Il SE Hardware 3-0009-0A05, H1V1-F Initial version
FlexCard PMC Hardware 3-0033-0A01, H1VO-F Initial version
FlexCard PMC Il Hardware 3-0055-0A01, H1V1-F Initial version
RELATED SOFTWARE VERSIONS (WINDOWS)

Component Ref.No., Version Remarks

fcBase API

3-0009-0K03, S5V1-F

Current version supports:
FlexCard Cyclone Il (SE),
FlexCard PMC (1)

Device Driver

3-0009-0E05, S5V1-F

Current version

RELATED SOFTWARE VERSIONS (LINUX)

Component

Ref.No., Version

Remarks

libfcBase API

3-0009-0U01, S5V1-F

Current version supports:
FlexCard Cyclone Il (SE),
FlexCard PMC (II)

Kernel module

3-0009-0U01, S5V1-F

Current version

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 4 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

RELATED SOFTWARE VERSIONS (XENOMAI)

Component

Ref.No., Version

Remarks

libfcBase API

3-0009-0V01, S4V2-F

Initial version supports:
FlexCard Cyclone Il (SE),
FlexCard PMC

Kernel module

3-0009-0V01, S4V2-F

Current version

RELATED SOFTWARE VERSIONS (VXWORKS)

Component

Ref.No., Version

Remarks

FlexCard PMC Driver

3-0033-0D01, S1V2-F

Current version supports:
FlexCard PMC

RELATED DOCUMENTS

Document Version Ordering number
FlexCard Cyclone Il SE Instructions for D2V7-F 3-0009-0T01-DO01
Use
FlexCard PMC Instructions for Use D1V5-F 3-0033-0P01-D01
FlexCard PMC Il Instructions for Use D1V1-F 3-0055-0P01-D05
FlexCard Cyclone Il SE Getting started D1V3-F 3-0009-0S01-D02
FlexCard PMC (Il) Getting started D1VO-F 3-0055-0P01-D0O7

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 5 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

CONTENTS

€1 =1 N1 TR 12
P A 101 (=T o 1= o BT SRR 12
L U 1YY €1 o] U] o U 12
1.3 PICIOGIramS ... 12
1.4 Meaning Of tEXE STYIES ..uuniiiiii e e et e e a e 12
A O 1Y =1 2 | PSSP 13
20 S 11 o o Yo o A 14
3 GETTING STARTED .tttuuiieeiieetittit e e e eeeeeeetta e e eeeeeeeeesta e eaeeee e e estaa s e eeeaeee e s ssaa s eeeeeeessssaansaeeeeeesssbansaaeaasessnees 15
R T N 1 1= = 11 = 4 o] o PR PSPPSR 15
2 [01 (=T o | = 1 (o] o PSP RUPPPTTNE 16
3.2.1 CalliNG CONVENTION ... ettt e e et ettt e e e e e e e e bbb es 19
R T2 |V [0 1T ==L I T PSP 19
K IR T = 2 Y o Ao 4 4 01 PSSP 19
3.3.1 Setting UP the PrOJECT ...ccvee i et e e e e 21
3.3.2 Getthe installed FIEXCArdscoouu it e et e e e e et e e e e et e e e eaa e e e aeennnns 21
G TG TR B O o 1= o = I oo 1Yo« o o S 22
3.3.4 Configure the FIEXCArdcooo it e e e e e e e e e ettt e e e e e e e eeattt e e aaaaaaaaaees 22
3.3.5 Start and StOP @ MEASUIEMENT.ot e e e e e e e e aa s 24
3.3.6 Receive FIEXRAY Framescoo it e e e e e et e e e e e eeeeees 24
3.3.7 Transmit FIEXRAY Framescoooiiiiiiiiii et e e ettt e eeeeeeeees 26
3.3.8 ClOSE @ CONNECHION.uuiiiiii i e e e e e e e e et e e e et e e e e st eeeeaeeanans 26
O N e =2 T o] | T TN 27
O B C 1Y =T - | PP NPUTRPPRRN 27
N @ Y=Y oV 1T A o] = T [27
4.2.1 From SAVO-F £0 S2V0-F ...ttt e e s e e e e e e et e s e e e e e e eaaaanenaas 27
4.2.2 From S2VO0-F 10 S2V2-Fottt e e e e e et e e e et eeeaaaana————_ 28
4.2.3 From S2V2-F 10 S3V0-F ...t e et eeeearannr 28
4.2.4 From S3VO-F £0 SAVO-F ... eeee e 28
4.2.5 From SAVO-F 10 SAV2-Fottt a e ———— 29
4.2.6 From SAV2-F 10 SOV -F ... ittt e e e e et eeeaaaaaa—a——_ 29
e B 1 o gl F= T T |1 gV PP 30
e T IO Y/ oYW LY 1 1o) =PSRRI 30
4.3.1.1 L7 =T o) RPN 30
4.3.2 ENUMEBIAtIONS ...t 31
4.3.21 (o = o] (O Lo [T PSPPSR 31
4.3.2.2 (o7 =14 o ol 18/ o TR 31
G TG T (¢ C 1= { =1 o o O o [PPSR 31
R N (o] C 1= { =l 4 o Tl 1Y/ o1 TSRO PPPPRS 32
N T (o] € 1= { =14 (o] gl =« PRSP PTRPPTRNt 32
A \Y (=Y 4 g o] o VAN o F= T o | 1 T PP 33
4.4 1 oy 0L =T = o 1= PPN 33
4411 {03/ E=T 0 0o] ALY/ o= PSR 33
N (o ol (== 11V [=To o Lo YU PPPPPPRS 34
I | o 11 (= 14 {1 o] o PP NPPPRPPTRNt 34
4.5.1 TYPE AEFINITIONS .t e ettt e e e e et e b 34
4511 (o1 F= 1 o | L= PP 34
451.2 L(61= 17 2C P 34
45.1.3 LA Lo (o TP 35

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 6 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4514 103 B2V oT (o PP 35

4.5.1.5 L{e1 @ U E= 1o [35
I = 014 0 =] = o] g PP 35
4521 (o1 =0T 1] = ST 35
4522 L1 @] 1 =T o1 1= 1 35
45.2.3 L (1O O 36
4524 L{03S] €= | (P 36
4.5.2.5 FCWAKEUPSTATUS ...t ettt e e e e 37
45.2.6 FCTrANSCEIVEISTAtE ... e 37
4527 {02377 0] oo I 1Y/ o1 YRR 38
4528 L(¢1 01 @21 1Y/ o = P PUPT 38
45.2.9 {11, [o] a1 (o] g1 aTe 1Y [o o [= 1= 3 TSP 39
45.2.10 FCFIEXCardDeVICEIA e et 39
TG T ¥ (o 1] Y= TR 40
4.5.3.1 L(03)\ L0001 1= O PP 40
4532 LA Z=1 110 1 41
45.3.3 LoV A=T T (0] 01N 0T ¢ =T o 41
4.53.4 L{e] [0 Y 42
4.5.3.5 L(o3 11 (015 11 P 43
4.5.3.6 LTe LaT o) LTS 43
454 fehbGetENUMFIEXCardSV 3 e e 44
N T (¢] o1 @] g T=Tod 14V =T =] o T o RO 45
T T (¢] 010 o= o S UPPPRTRP 46
TR A (o] o1 0 [= = 2 47
TR < T (o] o1 C 1=y { [} (o] ol 153 (= o [47
4.5.9 fcbSetUserDefinedCardldiiiiiiiiiiiiii e 48
4,510 fcbGetUserDefinedCardldcoooiiuiiiiiii e a e 48
N I O o] o1 o U] =1 (o o U PPPRS 49
4.6.1 (070 o153 7= [0} N 50
4.6.1.1 FCPayloadMaXimUIMottt ettt e e e e e e e 50
46.2 =Y o101 g LT =Y (o] o T PR 50
4.6.2.1 (oY 0| =10 3 o 1P 50
4.6.2.2 FEMSGBUTTXIMOTE. ...ttt e e et ettt e e e e e e e eenannenan 51
4.6.2.3 FCCOYCIEPOS .. ettt e ettt e e e e aaaaaan 51
TG T { ¥ (o 11 Y= TR 52
4.6.3.1 {03 EsT0 | =101 {03 (o | =¥ (o PSPPSR 52
4.6.3.2 {11V Yo] STV {03 (o] 2 OO PUPPUPPRRPPN 53
4.6.3.3 {021 Yo] =101 {03 o I PP PUPPPTTRPTN 54
4.6.3.4 {21V Yo =10 {3 o TSR 55
4.6.3.5 L{o 2o I 14 1= 4 (o PP 56
4.6.4 fcbReinitializeCcMesSageBUTTer.o i e 57
T T (o o1 1=y (N W10 0] oY= O o= 58
4.6.6 fcbSetContinueONPAaCKEtOVEMIOWiiiiiiii et 58
I A (o] o] €Ty {OTN =Y oYl T 0 [=15] =10 T o TSRS 59
4.6.8 fChRESEITIMESIAMP ..oeitiii ettt e e e et e eae e e e e e e eeeaeeeaanan 59
4.7 Trigger CONfIGUIAtION ittt e e ettt an e e e e e e e eeeeaaaas 60
471] (U o (0 (=N 61
4711 (o [T [T (@ oTaNiTo [0 = 1 To] a1 = 61
O A = U140 =] = o] g 3PP 62
4.7.21 (o (e T [T (@ oTaTo Il 1 o]] =5 PSP 62
G T (o] o 1S T= I 4 e o = PSP UUPPPPPPRS 64
O T V7= o) SR PP 65
4.8.1 =Y o 10T g LT =1 (o] o 3 PR 65
4.8.1.1 {0\ o)L Tor=Y (o] T 1N o 1= Y PSP 65
4.8.2 fCDSEtEVENTHANAIEVZo e e eans 65
T T (o7 o 1= I = 66

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 7 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.8.4 fcbNOfICAtIONPACKET.o ettt e e e e 67
B =TTV TP 68
e B IO Y/ oY= Yo 1Y 1o T1 1o) o =PSRN 68
4911 FCINFOPACKET ... e e e e e e e 68
49.1.2 FCFIEXRAYFIAME ... ettt e et et et e e e e e e eeennaeenan 68
4.9.1.3 FCTXACKNOWIEAGEPACKETeuiiieeieee et 70
49.1.4 fCErrPOCErrorModeChangedinfOuuueiiiiiiieeei e 72
4915 fCEITSYNCFIramMeESINTO....... i 72
49.1.6 fcErrClockCorrectionFailurelnfo ... e 72
4.9.1.7 L0 = 15710 4 1) o 73
49.1.8 (o7 =14 o] o = o7 (=Y PN 73
4919 fCStAtUSWAKEUPINTO ... 74
4.9.1.10 FCSTAtUSPACKEL ... e 75
4.9.1.11 L{0 A Y VA= o3 (o = Ve] 75
4.9.1.12 FENOLIfICAtIONPACKETot e e e e e e e eeenneeenan 76
49113 fCTHGGErEXINTOPACKET e e e e e aaa s 76
49.1.14 LT @7 AN | = Vo 1= U, 77
4.9.1.15 FCCANEITOrPaCKe! ... et e e e e e ean s 78
4.9.1.16 {1 = o] =Y TR 79
4.9.2 ENUMEIAIONS ..ottt 80
4.9.2.1 (o2 2= Ted =Y A 1Y/ o1 TP 80
4.9.2.2 FCEITOrPACKETFIAQ ettt e e e 80
4.9.2.3 {01 F= 1T] = Tod =] | = T O SRPRTSR 82
49.2.4 (o107 A N1 =1 ¢ {o] 114 1= 2P PP 83
4.9.3 FCDRECEIVE ...t e ettt e e e e eeaaaaan 83
O O o =T 1= (ST 85
4.10.1 CINTO (ODSOIELE) ... ettt e ettt e e et e e e e e eeenaaaas 85
o I (o] 14 (o XY (@] 01T 1= (= PPN 86
4.10.3 fEVErsion (OBSOLETE)ttt e e e e e e e e e e et e e e et e e e e et e e e eateeeesaaanaaaes 86
4.10.4 fcbGetEnumFIexCards (ODSOIEE)......ccov i 87
4.10.5 fcbGetEnumFIexCardsV2 (ODSOIEE)coouuuueiiiiiiiie e 88
4.10.6 fcbMonitoringStart (ODSOIETIE)uuui i 89
4.10.7 fcbMonitoringStop (ODSOIETE)....... i e 90
4.10.8 fchGetCceState (ODSOIELE)cooeiiiiii e e ettt e e e e e eeaenneeanan 90
4.10.9 fcbSetTransceiverState (ODSOIELE)cooiiiiiieiii e 91
4.10.10 fcbGetTransceiverState (ODSOIETE)ccviiiiiiiii i e e e e eeaeaaans 92
4.10.11 fcbSetEventHandle (ODSOIETE)ccouuiiieii et e e e e e e e ra e aeaes 92
4.10.12 febTransmit (ODSOIETE).... .o et e e et e e e e e eereeeeeanas 93
4.10.13 fcbTransmitSYmMbBOl (ODSOIELE)uiiiiiiiiiiie et e e 94
o OB B (o] o 1S 7=) (O o = To [) 1= G (@ T 1= =) ST 94
4.10.15 fcbGetCCREGIStEr (ODSOIEIE)uui i e e e e e e e aaaes 95
4.10.16 fcbChiCcConfiguration (ODSOIELE).......ccoeiiiiiiiii e 96
4.10.17 fcbCanDbCcConfiguration (ODSOIETE)uuuuiiiiiiie e 96
4.10.18 fcbConfigureMessageBuffer (ODSOIEIE)iiiiiiiiiiiie e 97
4.10.19 fcbReconfigureMessageBuffer (ODSOIEtE)..........iiiiiiiiiiii e 98
4.10.20 fcbGetCcMessageBuffer (ObSOIEte).......ooo i i 98
4.10.21 fcbResetCcMessageBuffer (ODSOIELE)uuuiiiiiiiii e 99
o VI (o] o =Y (O] o X=To] 1] (= PSP 99
4.10.23 fcbSetCcTimerConfig (ODSOIELE).......uui i 100
4.10.24 fcbGetCcTimerConfig (ODSOIELE)ooiiiiiiii e 101
4.10.25 fcbCalculateMacrotickOffset (ODSOIEte)uuuiiiiiiii e 101
4.10.26 Trigger configuration (ODSOIETE).......iiiiiiiiiiiiii e e et e e e e eeeaeees 102
4.10.27 Typedefinitions (ODSOIETE)cuuuiiiii e e e e e e et e e e e s 102
4.10.27.1 fcTriggerCfgHardware (ODSOIEte)..........uuuiiiiiiiiiii e e 102
4.10.27.2 fcTriggerCfgSoftware (ODSOIEe)coouuiieiiiii e 103
o VI A T (o I T To 1Y @3 o I (@ 0=] 1= C=) SRR 103

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 8 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.10.27.4 fcTriggerInfoPacket (ODSOIETE).....ccooiiiiiiiiii e 104

4.10.28 Enumerations (ODSOIELE)ooiiiiiiiie ittt e e e e et e eaeeeaaaeae 104
4.10.28.1 fcTriggerCondition (ODSOIETE)iiiiii i 104
4.10.28.2 fCTriggerType (ODSOIELE).......uu it e e e 105
4.10.28.3 fcTriggerMode (ODSOIELE)..... ...ttt e e 105
4.10.29 fChTrgger (ODSOIEIE) ..uuuiiiiiiiiieie et e e ettt e e e e e e e e eettb s e e e e eeeaeaeeeees 106
5 ADDITIONAL FLEXRAY AP ..ottt ettt ettt bbb e bbb nnnnnes 107
Lo TR I 1 131 2= o o 107
511 fehFRMONITOrINGSTarto e 107
5.1.2 fCBFRMONIOINGSIOP. . .cciiiieiii i e 108
o I T (o] o 1Y (01 023 - | (= SRR 109
5.1.4 fcbFRSetTransceiverState ... 109
5.1.5 fChFRGEtTranSCeIVErSIAte ... oiieei e e e e e eanens 110
5.2 CONFIQUIALION ..ot oottt e ettt e e e et 111
5.2.1 T U] 0= = 11 o 111
5.2.1.1 LLo2 == 18 e | &= (= USRS 111
B.2.2 SHIUCKUIES. ..ottt 111
5.2.2.1 Lo (O o1 ©'o T3 ¥ o 111
5.2.3 fCOFRSEICCREGISIEro e 116
5.24 fCOFRGEICCREGISIEI ..ottt e et e e e e e e e et a e e e aa e e 117
5.2.5 fchFRSetCcConfiguratioNChicoovuiiiiiii e e 117
526 fcbFRSetCcConfiguratioNnCANAD ... e 118
5.2.7 fChFRSetCCCONfIGUIAtION......coiiiiiii e 119
5.2.8 fChFRGEtCCCONTIGUIAtIONcceiiiiiiiie e e e e e e e e et e e e e e 121
5.2.9 fchFRCoNfiguUreMessageBUTTErueiiii e 121
5.2.10 fcbFRReconfigureMessageBuUfer ... e 122
5.2.11 fCOFRGEIMESSAGEBUITEI e 123
5.2.12 fChbFRRESEIMESSAgGEBUITEIS.....cciiiiiiiii e e e e e 124
5.2.13 fchFRSetSoftware AcceptanCeFilter... ... 124
5.2.14 fcbFRSetHardwareAcceptanCeFiltero e 125
5.2.15 fCOFRSEtCCTIMEICONTIQ ..uuiiiiiiiiiiii et 126
5.2.16 fCOFRGEICCTIMEICONTIG ..uuiiiiiiiiieiiiiie et e e e e e et e e e e e e e e e et e e aeaeaeas 126
5.2.17 fcbFRCalculateMacrotickOffSet ... 127
Lo G T I > o -] 1 4 128
5.3.1 L3 o 0 I = 1= 0 L P 128
5.3.2 fCBFRTransSmMitSYMDOL et 129
B OPTIONAL CAN AP ..ttt ettt ettt ettt ettt st e ettt e st e et benenees 130
6.1 BasiC CAN WOTKFIOWoooiiiiiiiiiiiiiiii it e e 130
6.2 INItIANZATION ...ceiieeiie e 132
6.2.1 ENUMEIAtiONSeeiiiiiiiiiiiie ettt 132
6.2.1.1 FCCANC CSTALE ... e 132
6.2.1.2 FCCANMONITONINGMOTE ... et e e e e e 132
SOV (+1 o107 N\ 11V FoT T3 (o] 1 g Te 1S ¢= o SRR 133
STV T (o1 1072N A1\ (o] a1 (ol g aT 1S3 (o] o S PSPPI 134
6.2.4 fCOCANGEICCSIAE ...ooeiiiiiiiiiii ettt e e neeeeees 135
6.3 CONFIGUIALION ..o ettt e e e ettt e e e e e e et b 135
6.3.1 T U] 0= = 11 o 135
6.3.1.1 (o107 2NN =100 (o N 57/ 1= ISR 135
6.3.1.2 fCCANBUFCTGRXAINCONAItION e a s 136
G T U [(1 =P 136
6.3.2.1 FCCANBUFCTGRXAIL ... e e e e e e e e 136
6.3.2.2 FOCANBUFCTGRX ..ttt e 137
6.3.2.3 FOCANBUFCTGTX 1ttt e 137
6.3.2.4 FCCANBUFCTGREMOLERX ...ttt e 138

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 9 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

6.3.2.5 FCCANBUFCTGREMOTETX ..ttt e e eeaaaaas 139

6.3.2.6 L(e1 072N\ = U1 o 140
6.3.2.7 (o107 AN\ O o1 @] o o PP 140
6.3.3 fChCANSEetCCCONfIGUIAtION .. .o 141
6.3.4 fCOCANSEIMESSAGEBUIME.o e 142
6.3.5 fCHCANGEIMESSAGEBUTTENot 142
N I =1 o <1111 TP P PP PP PP PO PP PPPPPPPPPP 143
6.4.1 FCDCANTIANSMIL....coi it ettt e e 143
7 ADDITIONAL CYCLONE I (SE) AND PMC (1) APL..coiiiiiieiieieeeeeeeeeee et eeneeeeneee 145
7.1 Self SYNCAIONIZAtIONo et 145
7.1.1 LO70] o1 i{o U] =1 1o o TP PPPPPPR 145
7.1.1.1 fcbConfigureMessageBufferSelfSynchronization ..o 145
7.1.1.2 fcbReconfigureMessageBufferSelfSynchronization ..o, 146
7.1.1.3 fcbReinitializeCcMessageBufferSelfSynchronization................ooooiiii e, 147
7114 fcbGetCcMessageBufferSelfSynchronization ..., 147
7115 fcbResetCcMessageBuffersSelfSynchronization ... 148
A I - 111 4L PO P PP PP PP P PP PPP PP 148
7.1.21 febTransmitSelfSynchronizationo e 148
8 ADDITIONAL PMC (1) CARD AP ...ttt tesseneesnssnnnnnnnenes 150
T I =1 010 0 =T =[] PRSP 150
T P B {7 = 1W< 0 =1 o | 1= SR 150
8.2 febSetBUSTErmMINationcooiiiiiiii e 151
8.3 febGetBUuSTermination ... 152
8.4 fCTriggerConfigUratioONEXiiiiiiiiiiiiii e e et e e e e e e e e e e e e e et e e e e et e e e e aae e e eeenrans 153
8.4.11 fCTriggerConditioNPIMCoou et e e e e e e e 153
I I O oX-To] 1] - TP 154
8.5.1 fchSetCcInNdex (ODSOIEE)coi i e 154
8.5.2 fchGetCcINdex (ODSOIEE).....cci it 155
O ADDITIONAL LINUX AP .ttt ettt bttt bttt bttt ettt bt bbb anennes 156
1S TR B [01 (=Y | = €] o TSP 156
0.2 BV et e et e e e 156
9.2.1 fchSetEventHandleSemaphoreo.u i 156
10 ADDITIONAL XENOMAI AP .ottt e sttt sssessesssnesnnsnnnnnn 158
(O B 01 =TT = 1o o (ST UOT PRSPPI 158
T =Y o | 158
10.2.1 febWatF OrEVENtY 2 e e e e e et e e e et e e ene e e eeena s 158
(IR T @ o =T] =Y USRI 159
10.3.1 fcbWaitFOrEVENt (ODSOIEIE) ..o e e e e et e e e e e eeeaeaees 159
11 ADDITIONAL VXWORKS AP ..ottt e ettt ettt e b e b eenne 160
(P B 101 =T o T = 1 o T o PRSPPI 160
I 0t Tt T {7 Y T 160
IRt T (0 I Y b | R 160
11.2 ReSHNCHONS / CRANGES ...eviiii et r e e e e e e ettt e e e e e e eeatta e e e eaaeeeaaeenes 160
11.2.1 Not supported type definitioNScoiiiiiiiiii e 160
11.2.2 Changed type definitioNS.........ouuiiiiiiii e 161
11.2.2.1 L (@AY 4= =] (o o 1 161
11.2.2.2 feTriggerConfigUratioNEX..........ooi it 161
11.2.2.3 Lo [1 Te= Y (1] a1 Y/ o1 USSR 162
11.2.2.4 fFCTHGGErEXINTOPACKELo a e 163
11.2.2.5 LLe =oAL 1Y/ o1 PRI 164

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 10 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

11.2.2.6 FOPACKET ... e 164

11.2.2.7 LL&2S 121 (= USRS 165
L 7R T N\ (o] =1 W] o oo o (=Y B 1] a1t (o] o = TR 167
11.2.4 Changed FUNCHIONSue e ettt e e e e e e e eeat e e e e e e eeeeeeeees 167
11.2.4.1 FEDMONITOIINGSTAIT ... ettt e e 167
11.2.4.2 (011 Lo a1 o] 4l aTe 1] (o] o SRR 168
11.2.4.3 fCDSEIEVENTHANAIE et 169
11.24.4 (07 0 3= =Y 1Y RS 169
T1.3 CONFIGUIALION ..o ettt e e e et ettt e e e e e et et et bbb r e e e eeeenee 171
11.3.1 fecbSetPacketGeneration et 171
11.3.2 fChSEtRECEIVEMEMOIYSIZE ...t e ettt e e e e e e e e ettt eeeeeeeeannens 171
(R S =Y o | RSP 172
11.4.1 fcbSetNotificatioNTyPeCOUNT........ e e e e e 172
12 POWER MANAGEMENTcititttti it e eeeeeeettte e e e e e e e eeeaat s e e e e e e e aasaa e e eeeeee e s ssaa s aeaeeessssaa s eeaeeeeessasnaeeeeeesssnnnnns 173
RS T 1 27 Y3 1 USSP 174
RS T B @ =Y Y o USRS 174
1S T2 I ¢ 11 =1 Lo o PP 175
(N o = =] N o USSP 176
LR I =11 o T =T o] 0 V20U 176
L N o o1y NV - 1 1o o - TSR 176
LR B €1 1011 o PP 176
LR] o) T U =Y PP 176
(8 T 13 T = USRI 177

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 11 of 180

1 GENERAL

1.1 INTENDED USE

This document describes the application programming interface of the FlexCard to build own software
applications.
The FlexCard is designed, intended and authorized exclusively for
a) EU: laboratory applications
b) US: industrial test equipment
Any other use needs the prior express written consent of Eberspéacher Electronics GmbH & Co. KG.

1.2 USER GROUP

This documentation is written for software developers who are familiar with C/C++ programming language
under the Windows™ operating systems and the FlexRay protocol specification.

Any person involved with installation, usage or maintenance of the FlexCard has to
» be a qualified technician
» strictly adhere to this guidance
> receive a briefing by an authorized person

1.3 PICTOGRAMS

Used to indicate a situation which may result in an operating failure.

Damage of the product may occur, but there is no hazard of injury
if not avoided.

Information
o Used to indicate information provided only for purposes of clarification, illustration,
and general information.

1.4 MEANING OF TEXT STYLES

In this document filenames, source code, FlexRay Protocol Variable, functions and structs are
marked with a different text format.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 12 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

2 OVERVIEW

This document describes the application programming interface (API) fcBase API for the FlexCard. The API
defines the basic functions and structures which are used to communicate with the FlexCard hardware, the
FlexRay™ and CAN bus. With these functions the developer is able to integrate the FlexCard in a FlexRay
cluster and CAN network.

The following figure illustrates a typical approach of accessing the FlexRay and CAN bus via the FlexCard:

Application

fcBase - API

FlexCard® Driver

Software

Hardware

FlexCard®

FlexRay Channel A+B
CAN
Trigger V4

Figure 1: Overview of a typical FlexCard system with hardware and software
The fcBase API consists of the following groups of functions:
e Error handling — Functions to get detailed error information
e Configuration — Functions and structures to configure the available communication controller (e.g.

message buffers) and the FlexCard hardware.

e |nitialization — Functions to enumerate the FlexCards in the system, to establish a connection to a
FlexCard and to start and stop the monitoring of the FlexRay and CAN bus.

e Transmit / Receive — Functions to receive FlexRay and CAN frames or informational frames (e.g.
Trigger information), or to transmit a FlexRay and CAN frame on a specific slot or id.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 13 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

e Event handling — Functions to obtain event handles which are signalled if a specific time elapses,
a wakeup pattern is detected or at the start of a new FlexRay cycle.

Additional there is a tracing module, which can only be accessed by the tracing control application. For
further information refer to chapter 13 in this document.

API Functions Tracing Control
Application

Configuration Initialisation

- Bus parameters . Eventhandling Tracing
- CHI-Import - Enumeration
- Open/Close

- Start/Stop monitoring

- Message buffers
- Triggers

Figure 2: fcBase API groups

2.1 SUPPORT

There is support available by Eberspacher Electronics regarding software (device driver and API) and
hardware. Before you submit a problem, ensure that you have the latest release of the software. The latest
versions of the device driver and APl are available from our support team or on our web site:
http://www.eberspaecher.com/electronics

If you encounter a problem, please send an email to ebel-support@eberspaecher.com, including the
following information:

e Description of your problem

o Detailed steps to reproduce the problem

e Version number of the device driver or loadable kernel module

e Version number of the DLL or shared object library

e Version number of the hardware

e Version number of the firmware

e Serial number of your FlexCard

e The application you are using

e Your computer system (manufacturer and type of PC, e.g. Dell Inspiron 7500)
e Your operating system (Windows 2000, XP, Vista, Linux, Xenomai, VxWorks)
e The cardbus or PCI adapter in your PC (e.g. Texas Instruments, ...)

e |f possible the CC configuration file or string (either CHI or CANdb) or a CC parameter list

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 14 of 180

http://www.eberspaecher.com/�
mailto:ebel-support@eberspaecher.com�

3-0009-0S01-D03_API Documentation_D1V12-F.doc

3 GETTING STARTED

In this section the necessary steps for developing a FlexCard application with Windows operating systems
are specified. First, the setup of the files and the integration in an Integrated Development Environment
(IDE) is described. The next section provides a guideline with important steps to create an application. This
includes the functions and structures which should normally be used. A more in depth view about the used
functions can be found in chapter 4 et seq.

3.1 INSTALLATION

For details about the installation process please refer to the installation section in [1]. After a successful
installation of the developer package the following directory structure should exist:

=R FherspaecherElectronics
[=1 [FlexCard
| Dac
| Driver
| Include
= 1) Sample
| Demol
| Demoz
|20 FrDemo
|20 FrDemo” Al
| FeDemoPMC
=l) Tools

| plugins

Figure 3: FlexCard directory structure

The directory Doc contains the documentation (APl documentation, User manuals and Getting started
guides) in PDF format.

The directory Driver contains the files for the manual installation of the device driver:
o fce052k.sys (Device driver for the Windows™ 2000 operating system)
e fceO5xp.sys (Device driver for the Windows™ XP and Vista operating system)
o fce05.inf (Text file containing information which is needed for the installation of the device driver)
e fce05.cat (Catalog file which is needed for driver signing)
o fcBase.dll (fcBase Library)

The previous directory is not required for developing user defined application, whereas the two following
directories are a must-have for a developer.

The directory Include contains the API definition, namely the fcBase header file:
o fcBase.h: The file includes the definition of the basic API functions.
e fcBaseTypes.h: The file contains the data types and enumerations (e.g. possible error codes) used
by the basic functions.
e fcBaseFlexRay.h: This file contains definitions of functions specific for FlexRay.
o fcBaseTypesFlexRay.h: The data types and enumerations for the FlexRay functions are defined
here.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 15 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

e fcBasePMC.h: The file includes additional definitions of API functions which are to use with
FlexCard PMC only.

o fcBaseTypesPMC.h: The file (for the FlexCard PMC only) contains additional data types and
enumerations used in this library.

e fcBaseCAN.h: The file includes the definition of the API functions which are to be used with a CAN
license only.

e fcBaseTypesCAN.h: The file (for FlexCards with CAN license only) contains additional data types
and enumerations used in this library.

o fcBase.lib: Exported functions

The directory Sample contains the following directories:
e Demol: Configuration files for a cluster composed of two FlexCards
e Demo2: Configuration files for a cluster composed of one FlexCard and two FlexNodes.
e fcDemo: Contains the source files for the demo application.
e fcDemoCAN: Contains the source files for the CAN demo application for a FlexCard.
e fcDemoPMC: Contains the source files for the demo application for a FlexCard PMC.

The directory Tools contains the following applications:
e CANBaudrateCalculator.exe: Application to calculate CAN CC configuration for fcBase CAN API.
e fcDemo.exe: The demo application for one FlexRay CC.
e fcDemoCAN.exe: The demo application for two CAN CCs.
e fcDemoPMC.exe: The demo application for two FlexRay CCs.
o FlexAlyzerV2.exe: FlexRay and CAN monitoring application for FlexCard products.
e FlexUpdate.exe: Firmware and license update application for FlexCard products.

Information
0 The windows installer will copy the fcBase.dll into your <windows>\system32

directory. If you do not use the windows installer, please check if the desired
version of the DLL is loaded. A description of the DLL search order which is used
by the Windows operating system can be found in [2].

3.2 INTEGRATION

There are different ways to integrate the fcBase DLL into your application depending on the development
platform and language. Under Microsoft Visual Studio the integration is done via the property pages/project
settings.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 16 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Projekteinstellungen ﬂ il

Einzstellungen fur; Allgemein | Debug I C/C++ Linker | Hesso% EE

Kategarie: IAIIgemein j Zuricksetzen |

Mame der Auszgabedatei;

Win32 Felease j

IHeIeasercBaseE:-:ample. ene

Objekt-/Bibliothek-kodule:
‘lchase.Iib ,

[~ Debugnfo generieren | lle Standardbibl. ignorieren

[Inkiementelles Binden

[Profiler-Lauf ermidglichen [~ Map-Datei erstellen

Frojekt Optiohen:

nolago Asubsyster windows fincremental no ﬂ
/pdb:"ReleasesfcB azeE wample. pdb"' /machine:| 386
fout:"ReleasefcB azek wample. exe' LI

ok | abbrechen |

Figure 4: Integration under Visual Studio 6.0

fcBaseExample-Eigenschaftenseiten x|

Kanfiguration: IReIease j Plattfarm: IACtive(WinSZ) j Korfigurations-Manager. .. |

=3 Korfigurationseigenschafte E {
Allgemein Standardbibliotheken ignorieren Mein

Debuggen Bibliothek ignarieren
[Crc++ MaoduldeFinition
3 Linker Maodul zur Assembly hinzufigen
Allgemein Werwalkete Ressourcendatei einbette
% Eingabe Symbolverweise erzwingen
Debuggen Werzdgett geladens DLLs
Swsbemn
Optirnierung
Eingebettete IDL
Erweitert
Befehlszeile

[Z1 Ressourcen

(23 Infarmationen durchsw
(23 Buildereigrisse

[Z3 Benutzerdef. Buildschri
(23 Webertwicklung

i

Zusdtzliche Abhangigkeiten

Bestimmt zusatzliche Elemente, die zu der WerknUpfungszeile {ex: kernel32.lib)
hinzugefigt werden. Dies ist von der Art der Konfiguration abhangig.

(1] I Abbrechen [(Ibemehmen Hilke

Figure 5: Integration under Visual Studio .NET 2003

Another alternative for Microsoft compiler users is to include the fcBase API via the Microsoft specific pre-
processor command:

#pragma comment(lib , « fcBase.lib »)

To complete the integration of the fcBase API into your user defined application, you have to add the files
fcBaseTypes.h, fcBaseTypesFlexRay.h, fcBase.h and fcBaseFlexRay.h. The include order is important
because the file fcBase.h uses definitions which are declared in fcBaseTypes.h and the file
fcBaseFlexRay.h uses definitions which are declared in fcBaseTypes.h and fcBaseTypeFlexRay.h. For
FlexCard PMC usage please also include the files fcBaseTypesPMC.h and fcBasePMC.h in the right order.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 17 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

In case your FlexCard is licensed to use CAN, the files fcBaseTypesCAN.h and fcBaseCAN.h should be

also included.

#include “fcBaseTypes.-h”
#include “fcBaseTypesFlexRay.h”
#include “fcBase.h”

#include “fcBaseFlexRay.h”

//Additional for PMC usage
#include “fcBaseTypesPMC.h”
#include “fcBasePMC.h”

//Additional for CAN usage
#include “fcBaseTypesCAN.h”
#include “fcBaseCAN.h”

The setup program sets the environment variable FLEXCARD_INC which directly points to the fcBase
include directory. This variable can be used as shown in the figures below.

fcDemo-Eigenschaftenseiten

KonFiguration: Iﬂctive(Debug)

=l elattform: active(winaz) =]

Konfigurations-Manaaget. .. |

onfigurationseigenschaften - | Zusatzliche Includeverzeichnisse l ${FLEXCARD_INC) I
Allgemein #using-Yerweise auflbsen
Debuggen Debuginformationsformat
Startbanner unterdricken Ja {fnologa)
g5 Allgemein wWarnungsebene Level 4 {/W4)
Optimisrung Mach B4-Git Portahilikatspeablemen su Ja (/Wpe4)
Praprozessar Warnungen als Fehler behandeln Mein
Codeerstellung
Sprache
orkompilierte Heade
Ausgabedateien
Infarmationen durch:
Erweitert
Befehlszeile
| Linker
|1 Ressourcen

&Programmdatenbank zum Bearbeiten und

|1 Infarmationen durchsud™
|1 Buildereignisse

ki

Zusdtzliche Includeverzeichnisse

’) Gibt ein oder mehrere Yerzeichnisse an, die zum Includepfad hinzugefigt werden,
1 Benutzerdef. Buﬂdschlttlj Verwenden Sie eine durch ein Semikalon getrennte Liske.

(1[Pfad])

Ok, I Abbrechen

[l Eermehnmen |

Hilfe

Figure 6: Using the variable FLEXCARD _INC under Visual Studio .NET 2003 (Compiler)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 18 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcDemo-Eigenschaftenseiten

Konfiguration: I.ﬂ\ctive(Debug) j PlattForm: IActive(WinSZ) j Kaonfigurations-Managet. .. |
onfigurationseigenschaften Ausgabedatei ${OutDir) ${ProjectName), exe

Allgermnein Status anzeigen Micht Festgelegt

Debuggen Versian
D CiC+H+ Inkrementelles Yerknipfen aktivieren Ja {/INCREMENTAL)
) Startbanner unkerdriicken Mein

% Allgemein Irparthibliokhek ignarieren Mein

Eingabe

Ausgabe registrisren

EEbt”gge“ Zusitzliche Bibliotheksverzeichnisse | ${FLEXCARD_INC)
wstem

Optimierung
Eingebettete IDL
Erweitert
Befehlszeile
| | Ressaourcen
|1 Infarmationen durchsuchen
|1 Buildereigrisse
[1 Berutzerdef, Buidschritt
| Wehenbwicklung

ol M

Ausgabedatei
Setzt den Standardausgabenamen aufer Kraft, (fOUT:[Dateil)

(] 4 I Abbrechen | Ulgernehmenl Hilke |

Figure 7: Using the variable FLEXCARD_INC under Visual Studio .NET 2003 (Linker)

@ Ensure you use the directory of the fcBase library and header files which
corresponds to the loaded DLL. A description of the DLL search order which is
used by the windows operating system can be found in [2].

3.2.1 CALLING CONVENTION

The dynamic link library was developed under Visual Studio C++.NET 2003. The Microsoft C/C++ compiler
supports five calling conventions (__cdecl, __stdcall, __ fastcall, this, naked). To provide access to the API
functions for other languages (e.g. Visual Basic), the functions are declared with _ stdcall calling
convention (function arguments are pushed onto the stack from right to left, the callee cleans the stack).

3.2.2 MULTITHREADING

All functions, which are not declared as obsolete, of the fcBase library are thread-safe. If you are using the
fcBase functions in the context of a multi-threaded program, the library ensures that only one thread is
accessing the internal shared data at any given time.

3.3 BASIC WORKFLOW

This section will guide you through the necessary workflow for creating an application for the FlexCard.
Figure 8 shows a typical workflow. The main functions and principles for building a user defined application
are introduced in this chapter. The chapter is based on the provided C/C++ example.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 19 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Enumerate the installed

. = FlexCards in the system j
Q<. [No FlexCards] \h:lexCards available]

fcbFRGetCcConfiguration
fcbFRSetCcConfiguration

= Open FlexCard

fcbGetEnumFlexCardsV3
fcFreeMemory

fcbOpen

fcbFRGetCcRegister
fcbFRSetCcRegister

_ Configure
fcbFRSetSoftwareAcceptanceFilter

FlexCard j

fcbFRSetHardwareAcceptanceFilter
fcbSetTrigger
fcbSetEventHandleVv2

[Start Monitoring j

 while

[Monitoring != Abort

)

[Receveive frames

fcbReceive
fcbFRGetCcState Get frames
[Frames=0]
’.T.I
)
3
@
12}
\%
A=}
[Process frames j

N

Transmit frame

J

fcbGetInfoFlexCard
fcbFRConfigureMessageBuffer
fcbFRReconfigureMessageBuffer
fcbFRGetMessageBuffer
fcbFRResetMessageBuffers
fcbFRGetCcTimerConfig
fcbFRSetCcTimerConfig
FfcbFRSetCcConfigurationChi

fcbFRMonitoringStart

fcbFRTransmit
fcbFRTransmitSymbol

[Stop Monitoring j fcbFRMonitoringStop

Close FlexCard

fcbClose

Figure 8: Typical FlexRay function workflow

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 20 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

3.3.1 SETTING UP THE PROJECT

For the development of the example project we will use Microsoft Visual Studio 2003 with the programming
language C/C++ and the Microsoft Foundation Class (MFC). The Visual Studio project wizard will generate
the framework for our MFC dialog based application (for more details, please refer to the documentation of
Microsoft Visual Studio 2003).

As described in the chapter Integration, we have to add the library and header files of the fcBase API. This
can be done easily at the end of the file stdafx.h. Ensure your compiler and linker use the correct path to
the fcBase header and library files.

// fcBase API

#pragma comment(lib, »fcBase.lib »)
#include “fcBaseTypes.h”

#include “fcBaseTypesFlexRay.h”
#include “fcBase.h”

#include “fcBaseFlexRay.h”

// for FlexCard PMC only
#include “fcBaseTypesPMC.h”
#include “fcBasePMC.h”

// for FlexCards with CAN license only
#include “fcBaseTypesCAN.h”
#include “fcBaseCAN.h”

3.3.2 GET THE INSTALLED FLEXCARDS

Before we can open a connection to a FlexCard, we require a valid FlexCard identifier. This can be done
with the function fcbGetEnumFlexCardsV3 which returns a list of FlexCards found in the system. In the
method CselectFlexCardDlg::OnlnitDialog() in our example we call fcbGetEnumFlexCardsV3 to
fill the combo box with available FlexCards found in the system.

Information

The fcinfoHwSw structure contains valid FlexCard information only if the member
FlexCardld is greater than 0. The FlexCardld is later used to open a
connection to the FlexCard.

fcError e = fcbGetEnumFlexCardsV3(&m_plInfoHwSw, false);
if (0 == ¢e)
{

// lterate through the list of flexcards
fclnfoHwSw* pCurrent = m_plnfoHwSw;
while (NULL != pCurrent)

{
// only if we got a valid flexcard identfier
if (0 !'= pCurrent->FlexCardld)
{
Cstring szltem;
szltem.Format(“FlexCard #%d”,pCurrent->InfoHardware.Serial);
// Add the string to the combo box
int nlndex = m_FlexCardComboBox. InsertString(0,szltem);
m_FlexCardComboBox.SetltemDataPtr(nlndex,pCurrent);
by
// get the next flexcard
pCurrent = pCurrent->pNext;
3

[S]

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 21 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

If the user selects one of the items in the combo box, we save the member FlexCardld from the structure
fcinfoHwSw into the member variable m_flexcardldentifier (see
CselectFlexCardDIlg: :UpdateVersioninformation).

int nCurrentSelection = m_FlexCardComboBox.GetCurSel();
if (-1 !'= nCurrentSelection)

fclnfo* pCurrent =
(fcinfo*)m_FlexCardComboBox.GetltemDataPtr(nCurrentSelection);

// Save the flexcard identifier
m_Fflexcardldentifier = pCurrent->FlexCardld;

}

Once finished with the selection of a FlexCard, we have to free the memory which was allocated by the
function fcbGetEnumFlexCardsV3.

CselectFlexCardDlg: :~CselectFlexCardDlg()

{
if (NULL '= m_plInfo)
{
fcFreeMemory(fcMemoryType lnfoHwSw,m_pInfo);
m_pInfo = NULL;
}
}
3.3.3 OPEN A CONNECTION

After getting a valid FlexCard identifier, we use it to open a connection to the FlexCard. The function
fcbOpen expects this identifier and returns a handle (to the previously selected FlexCard) which is later
used in all other functions.

Information

The function fcbOpen resets all configuration settings. That means that all
communication controller registers are set to their default value and the message
buffers are configured as FIFO buffer

m_hFlexCard = NULL:
fcError e = fcbOpen(&m_hFlexCard,dlg.FlexCardldentifier());

3.3.4 CONFIGURE THE FLEXCARD

In order to integrate the FlexCard into a FlexRay cluster it is essential to configure its communication
controller registers. These registers describe global cluster parameters (e.g. gdStaticSlot), node
parameters (e.g. pMicroPerCycle) and communication controller specific settings. The global cluster
parameters are identical for all nodes of a cluster, whereas the node parameters are set for each node
individually.

If one of these parameters is not correct, the integration of the FlexCard and/or the communication may fail.
Therefore it is recommended to use a tool (e.g. FlexConfig) which generates the configuration file for each
node.

In our example we use a CHI-compatible string to configure the FlexCard. As the function
fcbFRSetCcConfigurationChi expects a string, we read and parse the configuration file into a string.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 22 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Std::string s;
std::ifstream file(szPath);
if (1 File.is_openQ))

{
// Print error message
return;

}

char ch;

while (file.get(ch)) s += ch;
Ffile.close();

This string is passed to the function fcbFRSetCcConfigurationChi which will configure the specified
Communication Controller registers described in the chi file. Setting a configuration via this function will
override any previous configuration.

fcCC eCC = fcCC1l;
fcError e = fcbFRSetCcConfigurationChi(m_hFlexCard, eCC, s.c_str());

As we want to transmit messages on the FlexRay bus, we have to configure transmit buffers for the
FlexCard. To configure such a buffer two options exist: using the function fcboFRConfigureMessageBuffer or
via the CHI configuration string. There is a significant difference between these two methods: While
fcbFRConfigureMessageBuffer returns the index of the configured message buffer,
fcbFRSetCcConfigurationChi does not. And considering that to transmit the content of a message buffer,
the function fcbFRTransmit requires its index; we need a way to retrieve it. The following code performs this
task for all configured transmit message buffers.

// Get all transmit message buffers
unsigned int bufferldx = 1; // The first valid buffer is 1
while (true)

fcMsgBufCfg cfg;
fcCC eCC = fcCC1l;

// as long no error occurs we try to get each buffer
fcError e = fcbFRGetMessageBuffer(m_hFlexCard,eCC,bufferldx,&cfg);
if (0 = e) break;

// is this a tx buffer, then add it to our list
if (fcMsgBufTx == cfg.Type) Buffers[bufferldx] = cfg;

// next buffer index
bufferldx++;

}

The function fcbFRConfigureMessageBuffer is used to add a message buffer dynamically. This function
checks the given message buffer settings and will report an error in the case of a mismatch with a global
cluster parameter or a node specific parameter. The returned error informs the user about the mismatch.

fcMsgBufCfg cfg;

memset(&cfg, 0, sizeof(FfcMsgBufCfg));
cfg.Type = fcMsgBufTx;
cfg.ChannelFilter = fcChannelA;
cfg.CycleCounterFilter = 0;
cfg.Tx.Frameld = 5;
cfg.Tx.MessageBufferlinterrupt = O;
cfg.Tx.PayloadLength = 16;
cfg.Tx.PayloadLengthMax = 16;
cfg.Tx.PayloadPreamblelndicator = 0;
cfg.Tx.StartupFramelndicator = 0;
cfg.Tx.SyncFramelndicator = 0;
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot;
cfg.Tx.TxAcknowledgeShowNul lFrames = 0;
cfg.Tx.TxAcknowledgeShowPayload = 0;

fcCC eCC=FfcCC1;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 23 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

unsigned int bufferldx = 0;
fcError e = fcbFRConfigureMessageBuffer(m_hFlexCard,eCC,&bufferldx,cfg);

if (0 1= e)

ShowError(e);

}

Via the function fcbFRReconfigureMessageBuffer and with some restrictions (see message buffer
structure), the user can modify an existing message buffer.

3.35 START AND STOP A MEASUREMENT

After having successfully configured the FlexCard, the monitoring can be started through the function
fcbFRMonitoringStart. To use the FlexCard as a wakeup node, the flag enableWakeup has to be set to true
(the FlexCard must have been previously configured with the correct wakeup settings). To use the FlexCard
as a startup node, the flag enableColdstart has to be set to true (one transmit buffer with both startup and
sync flags set must have been previously configured). In the case of the integration of a FlexCard into a
running cluster, none of these two parameters has to be set. To be notified at the start of each cycle, the
flag enableCycleStartEvents has to be set to true and the user has to provide an event object (used to
signal when a new cycle starts) to the function fcbSetEventHandleV2.

// create the event handle which is signaled when a new cycle starts
const bool cyclestart = true;
fcCC eCC=fcCC1;

HANDLE hEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL);

// inform the api that the event should be used when a new cycle starts
fcError e = fcbSetEventHandleV2(m_hFlexCard, eCC,
hEvent, fcNotificationTypeCycleStarted);

// no coldstart and wakeup attempt have to be done
const bool coldstart = false;
const bool wakeup = false;

fcError e = fcbFRMonitoringStart(m_hFlexCard,eCC,fcMonitoringNormal,true,
cyclestart,coldstart,wakeup);

After starting the monitoring, it is highly recommended to verify that the integration has succeeded. It can
be determined either by receiving (via fcbReceive) a status packet with the flag
fcStatusStartupCompletedSuccessful ly set or by calling the function fcoFRGetCcState and checking that
the return value is fcStateNormalActive.

Calling the function fcbFRMonitoringStop will stop the monitoring and set back the communication
controller in its configuration state, fcStateConfig.

3.3.6 RECEIVE FLEXRAY FRAMES

Once the monitoring started, the FlexCard begins to monitor the FlexRay bus. The received FlexRay
frames and the FlexCard generated packets (Info frame, Error frame, etc.) can be fetched by the function
fcbReceive. A call to this function will get all available packets from the FlexCard.

The code below uses the cycle start event to collect the received data of the previous cycles. If the event is
signalled or if the timeout elapses, we get the available received packets (fcPacket) by calling the function
fcbReceive. The timeout is used as a fallback if the FlexCard is not successfully integrated and no cycle
start events could be generated.

DWORD CdemoDlg::Thread()

// .. Code removed for listing ..
fcCC eCC=fcCC1;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 24 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

}

The fcbReceive function returns the received data as a linked list of packets. The code below goes through

// create the event handle which is signaled when a new cycle starts
hEvents[1] = ::CreateEvent(NULL,FALSE,FALSE,NULL);

// inform the api that the event should be used when a new cycle starts
fcError e = fcbSetEventHandleV2(m_hFlexCard,eCC,hEvents[1],
fcNotificationTypeCycleStarted);

// .. Code removed for listing

while (endlessLoop)

{

// Wait until an event is signaled or until timeout has elapsed
DWORD dwResult = ::WaitForMultipleObjects(2,hEvents, false,
dwTimeOutMilliseconds);

switch (dwResult)

{
case WAIT_OBJECT_O+1: // Cycle start event
case WAIT_TIMEOUT: // or time is elasped
{
//Update our transmit buffers
AutomaticTransmit();

fcPacket* pPacket = NULL;
e = fcbReceive(m_hFlexCard, &pPacket);

if (0 == ¢e)
{
ProcessPackets(pPacket);
e = fcFreeMemory(fcMemoryTypePacket, pPacket);
3
else

// .. Code removed for listing

}
break;
// .. Code removed for listing

// .. Code removed for listing

the whole list and processes each packet.

Void CdemoDIlg::ProcessPackets(fcPacket* pPackets)

-

fcPacket* p = pPackets;
while (NULL !'= p)
{

switch (p->Type)

case fcPacketTypelnfo:
// .. Code removed for listing
break;

case fcPacketTypeFlexRayFrame:
// .. Code removed for listing

break;
// .. Code removed for listing
default:

}:

// get the next packet
p = p->pNextPacket;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 25 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information

can not continue in case the FlexCard is set to stop if a packet overflow occurred
(fcbSetContinueOnPacketOverflow). This error occurs if the application is too slow
to receive and process the packets. In such a case it is necessary to stop the
monitoring and start it again.

Q If an error packet with the flag fcErrFlexcardOverflow is received, the monitoring

After processing the packets, the memory allocated by the packet list has to be released.

ProcessPackets(pPacket);
e = fcFreeMemory(fcMemoryTypePacket, pPacket);

3.3.7 TRANSMIT FLEXRAY FRAMES

To transmit a frame on the FlexRay bus you need to have previously configured a transmit buffer and to
know its index. The transmission is done by calling the fcbFRTransmit function.

fcCC eCC=fcCC1;
fcWord payload[fcPayloadMaximum];
payload[0] = 0x0001; // Update your payload data

fcError e = fcbFRTransmit(m_hFlexCard,eCC,bufferldx,
payload, payloadLength) ;

The transmit function expects the index of the communication controller, the index of the transmit buffer,
the payload of the frame (the data) and the length of the payload section (the data length). The configured
payload length (set during configuration of the transmit buffer) and the payload length to transmit (set
during call to fcbFRTransmit) must match. The transmission may fail, if the buffer is currently in use
(fcGetErrorCode returns MSG_BUF_BUSY). In that case retry later.

3.3.8 CLOSE A CONNECTION

Once the measurement finished, closing the connection to the FlexCard is done by calling the function
fcbClose.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 26 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4 AP| DESCRIPTION

This chapter describes the application programming interface in detail. Each section represents a group of
operations dedicated to a common purpose (configuring, initializing, receiving...). For each group, the data
definition (structures and enumerations) is first described, followed by the API functions sometimes
illustrated with code samples.

For additional API descrition, which depends on the used operating system and/or used FlexCard device,
please refer to the following major chapters.

4.1 GENERAL

The FlexCard API uses a well-defined naming convention. Each function, structure or enumeration is
prefixed with fc or fcb. The prefix fcb (fcBase) stands for a function, a structure or an enumeration which is
only available in the fcBase API. Functions, structures or enumerations which are prefixed with fc are not
limited to the fcBase APl and could also be available in other FlexCard APIs.

Each function of this library (except some error handling functions) returns an error code. If the return value
is equal to zero, no error occurred. A number greater than zero indicates an error. To get more information

about it, use the error handling functions described in chapter 4.3.

Some functions will allocate memory for you. In such a case the fcFreeMemory function needs to be called

to release this memory.

4.2 OVERVIEW CHANGES
4.2.1 FrRoM S1VO-F 10 S2VO0-F
Change Reason Page Remark

Definition of type fcQuad corrected Portability 35 Downwardly compatible.
Works with applications
which are designed for
S1VO0-F.

Enumeration fcTransceiverState added New feature 37

Function fcbSetTransceiverState added New feature 91

Function fcbGetTransceiverState added New feature 92

Structure fcMsgBufCfgTx modified. New Feature 54 Downwardly compatible.

configuration options extended Works with applications

TxAcknowledgeShowNullFrames and which are designed for

TxAcknowledgeShowPayload added. S1VO0-F, if the reserved

TxAcknowledge packets work in all transmission member of this structure

modes. was set to zero.

New member fcNoticiationTypeWakeup for Feature 65 Downwardly compatible.

enumeration fcNotifyType added for getting extended Works with applications

notification if one of the transceivers has which are designed for

detected a wakeup event. S1VO-F.

Function fcbNotificationPacket added New feature 67

Structure fcinfoPacket modified. Rate and offset Feature 68 Downwardly compatible.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 27 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Change Reason Page Remark
correction information added. extended Works with applications
which are designed for
S1VO0-F.
Structure fcFlexRayFrame modified. Timestamp Feature 68 Downwardly compatible.
information added. extended. Works with applications
which are designed for
S1VO0-F.
Structure fcTxAcknowledgePacket modified. Feature 70 Downwardly compatible.
Additional information about the transmitted extended. Works with applications
frame added. which are designed for
S1VO0-F.
Structure fcNotificationPacket added New feature 76
Structure fcPacket modified. fcNotificationPacket | Feature 79 Downwardly compatible.
information added extended. Works with applications
which are designed for
S1VO0-F.
Enumeration fcErrorPacketFlag extended. Feature 80 Downwardly compatible.
extended. Works with applications
which are designed for
S1VO0-F.
4.2.2 FROM S2VO-F 1O S2V2-F
Change Reason Page Remark
PMC functions added: New features 150
fcbSetCCIndex, fcbGetCClndex,
fcbSetTermination, fcbGetTermination
PMC Enumerations added:
fcBusChannel, fcBusType
Added new trigger functionality for FlexCard Feature 58
Cyclone Il and FlexCard Cyclone SE. Triggers extended
can be OR-ed now.
Added Xenomai support function for event New feature 159
handling
4.2.3 FRoOM S2V2-F 10 S3VO0-F
Change Reason Page Remark
Added Self synchronization for FlexCard Cyclone | New features 145 Firmware-Version S3VO0-F
Il (SE) is needed
4.2.4 FrRoM S3VO-F 1O S4V0-F
Change Reason Page Remark
Added CAN API for FlexCard Cyclone Il (SE) New features 130 Firmware-Version
S4VO0-F is needed
Added function fcbResetTimestamp. New feature 59
Added function fcbGetNumberCcs. New feature 58
Added function fcbSetContinueOnPacketOverflow. New feature 58
Added function fcbCalculateMacrotickOffset. New feature 101
Added function fcbGetCcTimerConfig. New feature 101
Added function fcbSetCcTimerConfig. New feature 100

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 28 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Change Reason Page Remark
Added function fcbCheckVersion New feature 43
New packets CAN packet and CAN error packet. New feature 77,78
Extended enumeration fcPacketType Feature 80 Downwardly
extended compatible.
Extended enumeration fcCC Feature 36 Downwardly
extended compatible.
Extended enumeration fcTriggerConditionEx Feature 62 Downwardly
extended compatible.
Structure fcTriggerExInfoPacket modified. Reserved1 Feature 76 Downwardly
added extended compatible.
Structure fcCcTimerCfg added. New feature 56
Enumeration fcCyclePos added. New feature 51
Enumeration fcNotificationType modified. Feature 65 Downwardly
fcNotificationTypeCcTimer added. extended compatible.
Enumeration fcMemoryType modified. Feature 33 Downwardly
fcMemoryTypelnfoV2 added. extended compatible.
Structure fcinfoV2 added. New feature 86
Added function fcbGetEnumFlexCardsV2. New feature 86
Added function fcbReinitializeCcMessageBuffer New feature 57
Added function New feature 148
fcbReinitializeCcMessageBufferSelfSynchronization
Added function fcbGetCurrentTimeStamp New feature 59
4.2.5 FROM S4VO0-F 1O S4V2-F
Change Reason Page Remark
CAN APl is supported by FlexCard Cyclone Il (SE) and New features 130 Firmware-Version
FlexCard PMC/PCI. S4V2-F is needed
Added additional Linux API. New feature 156
Xenomai: Added thread-safe function for event handling. New feature 158
Added new thread-safe FlexRay API for all supported New features 107
devices.
Extended enumeration fcNotificationType. Feature 65 Downwardly
extended compatible.
Added thread-safe function for event handling. New feature 65
Structure fcFlexRayFrame modified. AsyncMode added. Feature 68 Downwardly
extended compatible.
4.2.6 FROM S4V2-F 10 S5V1-F
Change Reason Page Remark
Structure fcMemoryType modified. Feature 33 Downwardly
fcMemoryTypelnfoHwSW added. extended compatible.
Enumeration fcFlexCardDeviceld modified. Feature 39 Downwardly
fcFlexCardPMCII added. extended compatible.
Structure fcVersionCC modified. IncorrectPhysicalLayer Feature 41 Downwardly
added. extended compatible.
Structure fclnfoHw added. New features 42
Structure fclnfoSw added. New features 43
Structure fclnfoHwSw added. New features 43
Added function fcbGetEnumFlexCardsV3 New features 44

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 29 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Change Reason Page Remark
Added function fcbGetInfoFlexCard New features 47
Added function fcbSetUserDefinedCardld New features 48 Firmware-Version
S5V1-F is needed
Added function fcbGetUserDefinedCardld New features 48 Firmware-Version
S5V1-F is needed
Added function fcboFRSetHardwareAcceptanceFilter New features 125 Firmware-Version
S5V1-F is needed
Structure fcFlexRayFrame modified. FrameCRC added. Feature 68 Downwardly
extended compatible.
Structure fcTxAcknowledgePacket modified. ValidFrame, Feature 70 Downwardly
SyntaxError, ContentError added. extended compatible.
Structure fcCANMonitoringMode modified. Feature 132 Downwardly
fcCANMonitoringSilent, fcCANMonitoringActive, extended compatible.
fcCANMonitoringPassive added.
Structure fcCANBuUfCfgTx modified. newData added. Feature 137 Downwardly
extended compatible.
Structure fcCANBufCfgRemoteTx modified. newData Feature 139 Downwardly
added. extended compatible.
Added FlexCard PMC Il description New features 150 Firmware-Version
S5V1-F is needed
Enumeration fcBusChannel modified. fcBusChannel5 to Feature 150 Downwardly
fcBusChannel8 added. extended compatible.

4.3 ERROR HANDLING

Almost every function in this library returns with an error status number. The meaning of this status code
can be retrieved with the following functions and enumerations. Additional to this status code it is possible
to get hints about the error if you use the tool fcTracerControl.exe. For more information about the tracing
tool please refer to Tracing.

Information

In a few situations you will not get a meaningful error text. This happens for
example if the device driver reports an error to the API. In such a case only the
error code ACTION_FAILED is returned. To get a more detailed error description it
may be helpful to use the tracing module.

i

4.3.1 TYPE DEFINITIONS

4.3.1.1 FCERROR

This type provides information about an error. A zero value means no error occurred. To extract the
detailed information about an error, use the functions fcGetErrorType, fcGetErrorText and fcGetErrorCode.

Typedef unsigned int fcError;

Information

fcError is not equivalent to fcErrorCode (see fcErrorCode)

O

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 30 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.3.2 ENUMERATIONS

4.3.2.1FCERRORCODE

This enumeration contains all error codes which are reported by the fcBase API. To extract the error code
from a fcError use the fcGetErrorCode function. To get information for the error code use the
fcGetErrorText function. For detailed error description please refer to the Headerfile fcBaseTypes.h.

See Also
fcGetErrorCode, fcGetErrorText, fcGetErrorType

4.3.2.2FCERRORTYPE
This enumeration defines the type of error information. To get the fcErrorType from a fcError, use the
fcGetErrorType function.

Typedef enum fcErrorType

fcErrorTypeSuccess

fcErrorTypelnformation

fcErrorTypeWarning

TfcErrorTypeError
}fcErrorType;

(I
WNEFO

Members

fcErrorTypeSuccess
No error.

fcErrorTypelnformation
The error should be treated as an information message. The function has succeeded but wants
to give additional information.

fcErrorTypeWarning
The error should be treated as a warning message. The function has succeeded but the input

parameters are modified or not completely accepted.
fcErrorTypeError

The error should be treated as an error message. The function has failed.

See Also
fcGetErrorType, fcGetErrorText, fcGetErrorCode

4.3.3 FCGETERRORCODE

This function returns the error code for a given error. A zero value indicates no error occurred. The list of all
error codes can be found in the fcErrorCode enumeration (see fcBaseTypes.h).

fcErrorCode fcGetErrorCode(
fcError error
):

Parameters
error

[IN] An error value of type fcError

Return values
Error code

See Also
fcErrorCode, fcGetErrorType, fcGetErrorText

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 31 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.3.4 FCGETERRORTYPE
This function returns the error type for a given error. Please, refer to fcErrorType for more details.

fcErrorType fcGetErrorType(
fcError error
):

Parameters
error

[IN] An error value of type fcError

Return values
Error type

See Also
fcErrorType, fcGetErrorCode, fcGetErrorText

Example

fcError e = fcbFRSetCcConfigurationChi(hFlexCard,eCC,pszChi);
if (0 I=¢e)

{

// oops, something went wrong
fcErrorType etype = fcGetErrorType(e);
ifT (fcErrorTypelnformation == etype || fcErrorTypeWarning == etype)

{
// ok, the function succeeds, but the function wants to give us some
// information
Printinfo(e);
ks
else
{]
PrintError(e);
ks
T
4.3.5 FCGETERRORTEXT

This function returns the corresponding error text for a given error. To free the memory which was allocated
by this function, please use the function fcFreeMemory with the type fcMemoryTypeString (see
fcMemoryType). Some text will be generated at runtime to provide a more detailed error description.

TfcError fcGetErrorText(
fcError error,
char** szText

):
Parameters
error
[IN] An error value of type fcError for which an error text should be returned.
szText

[OUT] Address of a char pointer which holds the address for the generated error text.

Return values
If the function succeeds (return value is zero), the parameter szText contains the requested error
text. If the function fails szText isn’t valid. The fcErrorCode NULL_PARAMETER is returned if the
szText parameter is a null pointer, TEXT_NOT_DEFINIED if no error text for the given error could be
found, or MEMORY_ALLOCATION_FAILED to indicate that the memory allocation for the error text
failed.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 32 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example

fcError e = fcbOpen(&hFlexCard, flexcardld);
if (fcErrorTypeSuccess !'= fcGetErrorType(e))
{

char®* szErrorText = NULL;
it (0 == fcGetErrorText(e, &szErrorText))

{
// Print the error text and then free up the memory
PrintErrorText(szErrorText);
fcFreeMemory(fcMemoryTypeString, reinterpret_cast<void*>(szErrorText));
3
by
See Also

fcFreeMemory, fcGetErrorType, fcGetErrorCode

4.4 MEMORY HANDLING

As the API allocates memory for you, it has to free up this memory. For this task the API provides the
function fcFreeMemory which frees only the memory allocated by a function from the API. The reason why
the API provides this mechanism is that your application may be linked to a different C/C++ run-time library
than this library. Allocating memory in one module and freeing it in another one (with different run-time
libraries) may fail or cause a run-time error. Another reason for this implementation is that the APl can use

its own memory management in order to reuse the memory blocks.

4.4.1 ENUMERATIONS

4.4.1.1 FCMEMORYTYPE

This enumeration defines the memory types needed to release the memory allocated by the functions

fcGetErrorText, fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 (Obsolete),

fcbGetEnumFlexCardsV3, fcbGetInfoFlexCard and fcbReceive.

Typedef enum fcMemoryType

fcMemoryTypeString,

fcMemoryTypelnfo,

fcMemoryTypePacket,

fcMemoryTypelnfoV2,

fcMemoryTypelnfoHwSw,
} fcMemoryType;

Members

fcMemoryTypeString

Memory is of the type “char[]”
fcMemoryTypelnfo

Memory is of the type “fcInfo”
fcMemoryTypePacket

Memory is of the type “fcPacket”
fcMemoryTypelnfoV2

Memory is of the type “fcinfoV2”
fcMemoryType InfoHwSw

Memory is of the type “fciInfoHwSw”

See Also

fcFreeMemory, fcGetErrorText, fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2

(Obsolete), fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard, fcbReceive

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 33 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.4.2 FCFREEMEMORY

This function releases the memory allocated by one of the API functions fcGetErrorText,
fcbGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV2 (Obsolete), fcbGetEnumFlexCardsV3,
fcbGetInfoFlexCard or fcbReceive. The allocated memory can be used as long as necessary. If the
connection to the FlexCard is closed, all allocated memory blocks must be released with this function.

fcError fcFreeMemory(
const fcMemoryType memoryType,

void* p
E
Parameters
memoryType

Type of memory to be released.
P

Pointer to the memory to be released.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information. The fcErrorCode INVALID_PARAMETER is
returned if the memoryType parameter wasn’t correct, NULL_PARAMETER if the p parameter is a null
pointer.

Example

fcError e = fcbOpen(&hFlexCard, flexcardld);
if (0 = ¢e)

char* szErrorText = NULL;
if (0 == fcGetErrorText(e, &szErrorText))

{
// Print the error text and then free up the memory
PrintErrorText(szErrorText);
fcFreeMemory(fcMemoryTypeString, reinterpret_cast<void*>(szErrorText));
3
by
See Also

fcMemoryType, fcGetErrorText, fcoGetEnumFlexCards (Obsolete), fcbGetEnumFlexCardsV?2
(Obsolete), fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard, fcbReceive

4.5 INITIALIZATION

The following section describes the data structures and features used for initialization.

45.1 TYPE DEFINITIONS

4.5.1.1 FCHANDLE

It defines a handle to a FlexCard object. A handle is returned by the function fcbOpen (assuming that a
valid FlexCard identifier has been used).

Typedef void* fcHandle;

451.2 FCBYTE
Unsigned 8-Bit value.

Typedef unsigned char fcByte;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 34 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.5.1.3 FCWORD
Unsigned 16-Bit value.

Typedef unsigned short fcWord;

4514 FCDWORD
Unsigned 32-Bit value.

Typedef unsigned int fcDword;

4515 FCQUAD
Unsigned 64-Bit value.

typedef unsigned long long fcQuad;
45.2 ENUMERATIONS

4521 FCBUSTYPE
This enumeration defines the available FlexCard bus types.

Typedef enum fcBusType
{

fcBusTypeFlexRay = 0,
fcBusTypeCAN,
} fcBusType;

Members
fcBusTypeFlexRay

The FlexRay bus is selected.
fcBusTypeCAN

The CAN bus is selected.

See Also
fcVersionCC

4522 FCCHANNEL
This enumeration defines the available channel combination of the FlexCard.

Typedef enum fcChannel

fcChannelNone = 0x00,
fcChannelA = 0x01,
fcChannelB = 0x02,
fcChannelBoth = fcChannelA | fcChannelB,

} fcChannel;

Members
fcChannelNone
No FlexRay channel selected
fcChannelA
Only FlexRay channel A is selected
fcChannelB
Only FlexRay channel B is selected
fcChannelBoth
FlexRay channel A and B are selected
See Also

fcMsgBufCfg

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 35 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

45.2.3 FcCC

This enumeration defines the available FlexCard communication controller index depending on the
communication bus type.

Typedef enum fcCC
{

fcCC1l = 0x00,
fcCC2 = 0Ox01,
fcCC3 = 0x02,
fcCC4 = 0x03,
fcCC5 = 0x04,
fcCC6 = 0Ox05,
fcCC7 = 0x06,
fcCC8 = 0x07,
} fcCC;
Members
fcCC1l

The communication
fcCC2

The communication
fcCC3

The communication
fcCC4

The communication
fcCCh

The communication
fcCC6

The communication
fcCC7

The communication
fcCC8

The communication

4524 FCSTATE

This enumeration defines the possible communication controller POC states (FlexRay Protocol
Specification: vPOC!State). For more details about communication controller POC states, please refer to

(3].

Typedef enum fcState

fcStateUnknown,
fcStateConfig,
fcStateNormalActive,
fcStateNormalPassive
fcStateHalt,
fcStateReady,
fcStateStartup,
fcStateWakeup,
fcStateMonitorMode,

} fcState;

Members

fcStateUnknown

Communication controller state is not known.

fcStateConfig

Communication controller is in CONFIG state.

fcStateNormalActive

Communication controller is in NORMAL_ACTIVE state.

controller 1 is selected.

controller 2 is selected.

controller 3 is selected.

controller 4 is selected.

controller 5 is selected.

controller 6 is selected.

controller 7 is selected.

controller 8 is selected.

fcStateNormalPassive

Communication controller is in NORMAL_PASSIVE state.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 36 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcStateHalt

Communication controller is in HALT state.
fcStateReady

Communication controller is in READY state.
fcStateStartup

Communication controller is in STARTUP state.
fcStateWakeup

Communication controller is in WAKEUP state.
fcStateMonitorMode

Communication controller is in MONITORMODE state.

See Also
fcoFRGetCCState, fcbFRMonitoringStart

4525 FCWAKEUPSTATUS

This enumeration defines the possible communication controller wakeup states (FlexRay Protocol
Specification: vPOC!WakeupStatus). For more details about communication controller wakeup states,

please refer to [3].

Typedef enum fcWakeupStatus
{

fcWakeupStatusUndefined = O,
fcWakeupStatusReceiveHeader,
fcWakeupStatusReceiveWUP,
fcWakeupStatusCol lisionHeader,
fcWakeupStatusCollisionWUP,
fcWakeupStatusCol lisionUnknown
fcWakeupStatusTransmitted,

} fcWakeupStatus;

Members

fcWakeupStatusUndefined

FlexRay Protocol Specification: UNDEFINED
fcWakeupStatusReceiveHeader

FlexRay Protocol Specification: RECEIVE_HEADER
fcWakeupStatusReceiveWUP

FlexRay Protocol Specification: RECEIVE_WUP
fcWakeupStatusCollisionHeader

FlexRay Protocol Specification: COLLISION_HEADER
fcWakeupStatusCol lisionWUP

FlexRay Protocol Specification: COLLISION_WUP
fcWakeupStatusCollisionUnknown

FlexRay Protocol Specification: COLLISION_UNKNOWN
fcWakeupStatusTransmitted

FlexRay Protocol Specification: TRANSMITTED

See Also
fcStatusWakeuplnfo, fcStatusPacket

4.5.2.6 FCTRANSCEIVERSTATE

This enumeration defines the different states of the FlexRay transceivers.

Typedef enum fcTransceiverState

fcTransceiverNormal,
fcTransceiverSleep,
} fcTransceiverState;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 37 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Members
fcTransceiverNormal

Transceiver is in normal mode and is able to transmit and receive data via the FlexRay bus.

fcTransceiverSleep

Transceiver is in low power mode and is not able to transmit and receive data, but is able to

detect wake-up events on

the bus. If a wakeup is detected the event

fcNotificationTypeFRWakeup is fired.

See Also

fcbFRSetTransceiverState, fcbFRGetTransceiverState

Information

Q This enumeration is initially supported by FlexCard API version S2VO0-F.

4.5.2.7 FCSYMBOLTYPE

This enumeration defines the supported communication symbols when the communication controller is in
POC state NORMAL_ACTIVE. For more details about these symbols, please refer to the FlexRay Protocol
Specification. To send a wakeup symbol (WUS) or collision avoidance symbol (CAS), refer to the function

fcoFRMonitoringStart.

Typedef enum fcSymbolType

fcMediaAccessTestSymbolType = 1,
} fcSymbolType;

Members
fcMediaAccessTestSymbolType

Media Access Test Symbol (MTS)

See Also
fcbFRTransmitSymbol
45.2.8 FCCCTYPE

This enumeration defines the communication controller types supported by the APIl. The parameter
CCType of the structure fcVersionCC, which is returned by the functions fcbGetEnumFlexCardsV3,
indicates the communication controller used by the FlexCard.

Typedef enum FcCCType

Undefined = O,

FreeScale_FPGA,

Bosch_E_Ray,

Bosch_DCAN,
}fcCCType;

Members
Undefined

Undefined communication controller.

FreeScale FPGA

Communication controller is a FreeScale FPGA

Bosch_E_Ray

Communication controller is a Bosch E-Ray

Bosch_DCAN

Communication controller is a Bosch DCAN

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 38 of 180

See Also
fcVersionCC, fcbGetEnumFlexCardsV3

Remarks
Current FlexCard hardware (FlexCard PMC (Il), FlexCard Cyclone Il (SE)) supported by the latest
driver versions integrate Bosch E-Ray and D-CAN communication controllers.

4.5.2.9 FCMONITORINGMODES
This enumeration defines the different modes available, used to monitor a FlexRay cluster.

Typedef enum fcMonitoringModes

fcMonitoringNormal,

fcMonitoringDebug,

fcMonitoringDebugAsynchron,

fcMonitoringDebugAsynchronBeforeStartup,
} fcMonitoringModes;

Members

fcMonitoringNormal
First, the FlexCard tries to synchronize itself with the cluster. Once the synchronization
succeeds, the FlexCard enters in the NORMAL_ACTIVE state and is able to transmit and
receive FlexRay frames, symbols and errors, as previously configured.

fcMonitoringDebug
The FlexCard does not try to synchronize itself with the cluster and is only able to receive
FlexRay frames, symbols and errors from the FlexRay bus. This mode does not allow
transmission; it is therefore not possible to perform a start-up or a wakeup. This mode is
adapted for debugging purpose (e.g. start up of a FlexRay network fails).
Note: This mode is an E-Ray specific feature and is thereby only available for the E-Ray
FlexCard version. To receive frames within this mode, you have to configure receive buffers.
The FIFO receive buffers aren’t working in this mode.

fcMonitoringDebugAsynchron
This debug operation mode of the FlexCard allows the reception of all frames without any
message buffer and controller configuration. The only parameter to be set is the baudrate
Register 0x0090: 10 Mbit/s: 0x00000000, 5 Mbit/s: 0x00004000, 2.5 Mbit/s: 0x00008000.
This mode does not allow transmission. It is therefore not possible to perform a start-up or a
wakeup. This mode is adapted for debugging purpose (e.g. start up of a FlexRay network fails
or to monitor an unknown network). The timestamp accuracy in this mode is +/-2 ys. Incorrect
data will be interpreted as received FlexRay frames. In this case the Valid Frame Bit is not set.

fcMonitoringDebugAsynchronBeforeStartup
This mode combines the mode fcMonitoringDebugAsynchron and fcMonitoringNormal. The
mode fcMonitoringDebugAsynchron is used to receive all frames during startup. Unlike
fcMonitoringDebug this mode allows to send synch frames. After the startup completed
successfully, the FlexCard switchs directly to the mode fcMonitoringNormal.

See Also
fcobFRMonitoringStart

4.5.2.10 FCFLEXCARDDEVICEID
This enumeration defines the different FlexCard types. The driver supports all FlexCard types beside

3-0009-0S01-D03_API Documentation_D1V12-F.doc

FlexCard PXI (aka FlexCard Cyclone Il PXI).

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 39 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef enum fcFlexCardDeviceld

fcNoDevice
fcFlexCardCyclonell
fcFlexCardCyclonel IPXI
fcFlexCardPMC
fcFlexCardCyclonel ISE
fcFlexCardPMCIH I

} fcFlexCardDeviceld;

W
©CoO~NOOO

Members
fcNoDevice

No FlexCard device was detected.
fcFlexCardCyclonell

The device identifier of a FlexCard Cyclone II.
fcFlexCardCyclonel IPXI

The device identifier of a FlexCard PXI.
fcFlexCardPMC

The device identifier of a FlexCard PMC / PCI.
fcFlexCardCyclonel ISE

The device identifier of a FlexCard Cyclone Il SE.
fcFlexCardPMCI I

The device identifier of a FlexCard PMC IlI.

See Also
fcinfoHw, fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard

4.5.3 STRUCTURES

4.5.31 FCNUMBERCC
This structure provides information about the available number of communication controllers of the
FlexCard hardware.

Typedef struct fcNumberCC

fcByte FlexRay;

fcByte CAN;

fcByte LIN;

fcByte MOST;

fcByte Reserved[4];
} fcNumberCC;

Members
FlexRay
Number of FlexRay communication controllers.
CAN
Number of CAN communication controllers.
LIN
Number of LIN communication controllers. This parameter is currently not supported.
MOST
Number of MOST communication controllers. This parameter is currently not supported.
Reserved
Reserved for future use.
See Also

fcinfoHw, fcbGetNumberCcs, fcbGetinfoFlexCard

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 40 of 180

Information
o This structure is initially supported by FlexCard API version S4VO0-F.

45.3.2 FCVERSIONCC
This structure provides version information about the available FlexCard communication controllers.

Typedef struct fcVersionCC

fcBusType BusType;
fcCC CClIndex;
fcCCType CCType;
fcVersionNumber CCVersion;
fcVersionNumber Protocol;
fcVersionCC* pNext;
fcDword IncorrectPhysicallLayer : 1;
fcDword Reserved[2];

} fcVersionCC;

Members
BusType
Communication controller bus type
CCIndex
Communication controller identifier
CCType
Communication controller type
CCVersion
Communication controller version
Protocol
Protocol version of the bus type
pNext
Pointer to the next cc version. If the pointer is NULL, there are no more cc versions available.
IncorrectPhysicallLayer
Physical layer module detection. A value <> 0 indicates a mismatch between communication
controller type and physical layer module.
Reserved
Reserved for future use

See Also
fcbGetNumberCcs
Information
0 This structure is initially supported by FlexCard API version S4V0-F.
45.3.3 FCVERSIONNUMBER

This structure describes the version of a FlexCard component (hardware or software). The function
fcbGetEnumFlexCardsV3 returns the version numbers for the FlexCard components.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 41 of 180

Typedef struct fcVersionNumber

fcDword Major;

fcDword Minor;

fcDword Update;

fcDword Release;
} fcVersionNumber;

Members
Major
An increment indicates a modification which is not downwardly compatible
Minor
An increment indicates a light-weight modification
Update
Indicates an update (bug fix) for a minor version
Release
0 indicates a release version, greater than 0 indicates a test version
See Also

fcinfoHw, fclnfoSw, fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard

4534 FCINFOHW
This structure provides information about the hardware components of a FlexCard.

typedef struct fclnfoHw
{

fcQuad Serial;
fcFlexCardDeviceld Deviceld;
fcVersionNumber VersionFirmware;
fcVersionNumber VersionHardware;
fcNumberCC SupportedCCs;
fcNumberCC LicensedCCs;
fcNumberCC UseableCCs;
fcVersionCC* pVersionCC;
fcDword Reserved[8];

} fcinfoHw;

Members
Serial

FlexCard serial number. A zero value indicates a non-valid FlexCard serial number.
Deviceld

FlexCard Device ID
VersionFirmware

Firmware (gateway software) version

VersionHardware

FlexCard hardware version
SupportedCCs

Possible FlexCard communication controller counts with the hardware.
LicensedCCs

Licensed FlexCard communication controller counts with the hardware.
UseableCCs

Useable FlexCard communication controller counts for the software.
pVersionCC

Pointer to version information about the useable communication controllers.

‘ Reserved

Reserved for future use

See Also
fclnfoSw, fclnfoHwSw, fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 42 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information
o This structure is initially supported by FlexCard API version S5V1-F.

45.3.5 FCINFOSW
This structure provides information about the software components of a FlexCard.

typedef struct fclnfoSw

fcVersionNumber VersionBaseDIl;
fcVersionNumber VersionDeviceDriver;
fcDword LicensedForLinuxDriver : 1;
fcDword LicensedForWindowsDriver : 1;
fcDword LicensedForXenomaiDriver : 1;
fcDword Reserved[4];

} fcinfoSw;

Members
VersionBaseDI 1

DLL Base Version
VersionDeviceDriver

Device driver version
LicensedForLinuxDriver

Valid license for FlexCard Linux driver
LicensedForWindowsDriver

Valid license for FlexCard Windows driver
LicensedForXenomaiDriver

Valid license for FlexCard Xenomai driver
Reserved

Reserved for future use

See Also
fclnfoHw, fclnfoHwSw, fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard

Information
o This structure is initially supported by FlexCard API version S5V1-F.

45.3.6 FCINFOHWSW

This structure provides information about the components, the identifiers and the current device state of a
FlexCard. If more than one FlexCard is detected on the system, the fcbGetEnumFlexCardsV3 function
returns a linked list of this structure; the function fcbGetinfoFlexCard function returns an item of this
structure.

typedef struct fclnfoHwSw
{

fcDword FlexCardld;
fcDword UserDefinedCardld;
fclnfoSw InfoSoftware;
fclnfoHw InfoHardware;
fcDword Busy : 1;
fcInfoHwSw* pNext;
fcDword Reserved[2];

} fcinfoHwSw;

Members
FlexCardld
Unique number used to identify a FlexCard. This id is required to open a connection to the
FlexCard.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 43 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

UserDefinedCardld
User defined number used to identify a FlexCard. This id is not unique! A zero value indicates
a non-valid or non-existing identifier
InfoSoftware
Information about software components of the FlexCard.
InfoHardware
Information about hardware components of the FlexCard.
Busy
The current device state. A value <> 0 indicates a connection to this FlexCard is already
opened.
pNext
Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer.
Reserved
Reserved for future use

See Also
fcinfoHw, fcinfoSw, fcbGetEnumFlexCardsV3, fcbGetinfoFlexCard

Information
Q This structure is initially supported by FlexCard API version S5V1-F.

454 FCBGETENUMFLEXCARDSV3

This function returns a linked list of the installed FlexCards found on the system. To free the memory, which
was allocated by this function, please use the function fcFreeMemory with type fcMemoryType InfoHwSw.

TfcError fcbGetEnumFlexCardsV3(
FfclInfoHwSw** plnfoHwSw,
bool getBusyDevices

)
Parameters
p InfoHwSw
[OUT] linked list of fcInfoHwSw objects
getBusyDevices

[IN] Show busy devices in linked list. Set this parameter to false to get a linked list of the
unused FlexCards found on the system.

Return values
If the function succeeds, the return value is 0. If the function fails the content of pInfoHwSw is not
valid. The error code NULL_PARAMETER is returned if pInfoHwSw parameter is a null pointer. If the
memory allocation fails, the error code MEMORY_ALLOCATION_FAILED is returned.

Remarks
If the function succeeds, there will always be one valid fcInfoHwSw structure regardless if there is a
FlexCard in the system or not. This functionality is given to provide version information about the DLL
/ library. The version information concerning the hardware is only valid if the identifier (pInfoHwSw-
>FlexCardld) is not 0.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 44 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information
Q This function allocates memory for use. To prevent memory leaks you have to free
it up by calling the function fcFreeMemory with the type fcMemoryType lnfoHwSw.

See Also
fclnfoHwSw

Example

//

// Get the installed FlexCards in the system and print the version numbers
//

fclnfoHwSw* pInfoHwSw = NULL;

fcError e = fcbGetEnumFlexCardsV3(&plnfoHwSw, true);

if (0 = e) return; // if it fails, return directly

fclnfoHwSw* pLoop = pInfoHwSw;
while (NULL != pLoop)

{
// it FlexCard Id is equal to zero, we got NO FlexCard in the systenm
bool bFlexCardAvailable = (0 '= pLoop->FlexCardld);
printf(“\r\nFlexCard Id\t: *);
it (bFlexCardAvailable) printf(“%d\r\n”,pLoop->FlexCardld);
else printf(“not available\r\n”);
// if FlexCard isn’t in use, we print out the version numbers
it (bFlexCardAvailable && (0 == pLoop->Busy))
{/*... print out the version numbers ...*/}
else printf(“FlexCard is in use\r\n”);
pLoop = pLoop->pNext; // get the next flexcard

3

// Don’t forget to free the memory
fcFreeMemory(fcMemoryTypelnfoHwSw, plnfoHwSw) ;

Information
O This function is initially supported by FlexCard API version S5V1-F.

455 FCBCHECKVERSION

This function checks the version combination of the installed driver (“fcBase.DLL and fce05xp.SYS /
fce052k.SYS” or “flexcard.ko and libfcBase.s0”) and the FlexCard firmware. This function can only be called

after fcbOpen.

fcError fcbCheckVersion(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to a FlexCard.

Return values
If the function succeeds, the return value is 0 and the opened FlexCard can be used with the SYS
and DLL. If the return value is <> 0, use the functions described in the section Error Handling to get
extended error information and the opened FlexCard cannot be used with SYS and DLL versions.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 45 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example
fcError e = fcbCheckVersion(hFlexCard);

if (0 1= e)
// Error handling
3
Information
0 This function is initially supported by FlexCard API version S4V0-F.
4.5.6 FCBOPEN

This function opens a connection to a specified FlexCard and returns a handle to this FlexCard. The
function modifies some communication controller registers (e.g. set the communication controller in its
configuration state, fcStateConfig) and all message buffers are configured as receive FIFO buffers with
maximum payload length.

fcError fcbOpen(
fcHandle* phFlexCard,
fcDword flexCardld

)
Parameters
phFlexCard
[OUT] Handle to a specific FlexCard.
flexCardld

[IN] Number which indicates the FlexCard you want to use. This identifier is stored in
fcinfoHwSw objects returned by the function fcbGetEnumFlexCardsV3. Only FlexCardld
greater than zero are valid FlexCard identifier.

Return values
If the function succeeds, phFlexCard holds a valid FlexCard handle and the return value is 0. If the
value is <> 0, use the functions described in the section Error Handling to get extended error
information.

Remarks
Use the functions fcbGetEnumFlexCardsV3 to get a valid FlexCardld. The function fcbClose is
used to close a connection previously opened with fcbOpen.

Information

If the FlexCard is closed and reopened, all previous (before closing) configuration
settings are lost. After opening a connection it is necessary to configure the
FlexCard.

See Also
fcbGetEnumFlexCardsV3, fcbClose

Example

fclnfoHwSw* pInfoHwSw = NULL;
fcHandle hFlexCard = NULL;

it (0 == fcbGetEnumFlexCardsV3(&plInfoHwSw, true))

// Open the flexcard using the first flexcard identifier
fcError e = fcbOpen(&hFlexCard, pInfoHwSw ->FlexCardld);

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 46 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

// always free the memory which was allocated by fcbGetEnumFlexCardsV3
fcFreeMemory(fcMemoryTypelnfoHwSw, plnfoHwSw) ;
if (0 = ¢e) // handle isn’t valid

printError(e);

457 FCBCLOSE
This function closes the connection to a FlexCard.

fcError fcbClose(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to a FlexCard

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
If a monitoring is active, this function will first stop the monitoring and then close the connection.

See Also
fcbGetEnumFlexCardsV3, fcbOpen

Example
fcError e = fcbClose(hFlexCard);
if (0 == ¢e)

// This handle isn’t valid anymore
hFlexCard = NULL;

4.5.8 FCBGETINFOFLEXCARD

This function returns an item of the structure fcinfoHwSw, which provides information about the
components, the identifiers and the current device state of the opened FlexCard device. To free the
memory which was allocated by this function, please use the function fcFreeMemory with type
fcMemoryType InfoHwSw.

TfcError fcbGetlnfoFlexCard(
fcHandle hFlexCard,
fcinfoHwSw** plnfoHwSw

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
p InfoHwSw

[OUT] Hard- and software information of a FlexCard.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 47 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information
o This function allocates memory for use. To prevent memory leaks you have to free
it up by calling the function fcFreeMemory with the type fcMemoryType lnfoHwSw.

See Also
fcbGetEnumFlexCardsV3, fcbOpen

Example

féinfonSw* pInfoHwSw = NULL;
fcError e = fcbGetInfoFlexCard(hFlexCard, &plnfoHwSw);
if (0 == e)

// Check open device

// always free the memory which was allocated by fcbGetlnfoFlexCard
fcFreeMemory(fcMemoryTypelnfoHwSw, plnfoHwSw) ;
if (O = e) // handle isn’t valid

printError(e);

Information
o This function is initially supported by FlexCard API version S5V1-F.

45.9 FCBSETUSERDEFINEDCARDID
This function writes a persistent user ID to the FlexCard.

fcError fcbSetUserDefinedCardld (
fcHandle hFlexCard,
fcDword UserDefinedCardld

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
UserDefinedCardld

[IN] The ID that will be given to the FlexCard.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Information
o This function is initially supported by FlexCard API version S5V1-F.

4.5.10 FCBGETUSERDEFINEDCARDID

This function reads the persistent ID from the FlexCard.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 48 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbGetUserDefinedCardld (
fcHandle hFlexCard,
fcDword* pUserDefinedCardld

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
UserDefinedCardld

[OUT] The user defined FlexCard ID.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Information

Q This function is initially supported by FlexCard API version S5V1-F.

4.6 CONFIGURATION

This chapter describes the functions and data types used to configure both communication controller and
hardware of a FlexCard. The configuration phase of a FlexCard is an essential part of its integration into a
cluster and can not be skipped. Entering the bus parameters of an existent network is possible directly or
by CHI/CANdb-Import. If one of the FlexCard configuration settings does not match the cluster ones, the
FlexCard may not be able to monitor the bus. Therefore, it is highly recommended to use a configuration
tool for designing a new FlexRay network. FlexConfig from Eberspéacher Electronics is such a tool that
outputs a CHI file. It automatically validates and generates for each FlexRay parameter the corresponding
register values of each node in a cluster. Manual configuration of the FlexCard is also a possibility but will
be a complex, time-consuming and error-prone method due to the large number of Eray registers used for
configuration.

As the FlexCard uses the receive FIFO functionality from the communication controller to monitor the
FlexRay frames, the fcBase API has to ensure that enough FIFO message buffers are configured, that
means that not all message buffers are available for the user. Modifying the FIFO message buffers settings
may affect the ability to correctly monitor the FlexRay bus.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 49 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

gB one fcChannelNone

gB 0 fcChannelA
gBufR fcChannelB
gB fcChannelBoth

PYRRTRN

aB D pe /
fcChannel ChannelFilter;
—»
\
gB g 0 o)
L
\
¥
fcMsgBufTxSingleShot
fcMsgBufTxContinous
Figure 9: Overview fcbMsgBufCfg structure
46.1 CONSTANTS
46.1.1 FCPAYLOADMAXIMUM

Maximum number of 2-byte payload data words

const fcByte fcPayloadMaximum = 127

4.6.2 ENUMERATIONS

4.6.2.1 FCMSGBUFTYPE

For the transmission and reception of FlexRay frames the communication controller provides different types
of message buffers. Each message buffer can be assigned with one of the following specific types.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 50 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef enum fcMsgBufType
{

fcMsgBufNone,

fcMsgBufRx,

fcMsgBufTx,

fcMsgBufFifo,
} fcMsgBufType;

Members
fcMsgBufNone

The message buffer is not used.
fcMsgBufRx
The message buffer is used as a receive buffer (e.g. to analyse a specific frame).
fcMsgBufTx
The message buffer is used as a transmit buffer (e.g. to transmit a message on a specific
communication slot).
fcMsgBufFifo
The message buffer is used as a receive FIFO buffer. In that case, it will receive frames from
different communication slots.

Information
In certain cases, it is not possible to receive all frames with only receive message
buffers. To ensure that all frames will be received, we recommend to configure
some FIFO message buffers.

See Also
fcMsgBufCfg

46.2.2 FCMSGBUFTXMODE
This enumeration defines the different modes of transmission.

Typedef enum FfcMsgBufTxMode

fcMsgBufTxSingleShot,
fcMsgBufTxContinous,
}fcMsgBufTxMode;

Members
fcMsgBufTxSingleShot

Frame is transmitted once only if its corresponding message buffer content has been set and
both frame id and cycle filter are matching. The function fcbFRTransmit sets the content of a
given message buffer.

fcMsgBufTxContinous
Frame is transmitted each time when both the frame id and cycle filter are matching, regardless
if its corresponding message buffer content has been set or not.

See Also
fcMsgBufCfgTx

46.2.3 FCCYCLEPOS
This enumeration defines various positions in a FlexRay cycle.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 51 of 180

Typedef enum fcCyclePos
fcCyclePosNotDefined = 0,

fcCyclePosStaticSlot,
fcCyclePosDynamicMiniSlot,

fcCyclePosEndStaticSegment,

fcCyclePosStartDynamicSegment,

fcCyclePosEndDynamicSegment,

fcCyclePosStartSymbolWindow,

fcCyclePosEndSymbolWindow,

fcCyclePosStartNetworkldleTime,
} fcCyclePos;

Members
fcCyclePosNotDefined

No cycle position defined
fcCyclePosStaticSlot

Defines the start of a static slot
fcCyclePosDynamicMiniSlot

Defines the start of a dynamic mini slot
fcCyclePosEndStaticSegment

Defines the end of the static segment
fcCyclePosStartDynamicSegment

Defines the start of the dynamic segment
fcCyclePosEndDynamicSegment

Defines the end of the dynamic segment
fcCyclePosStartSymbolWindow

Defines the start of the symbol window
fcCyclePosEndSymbolWindow

Defines the end of the symbol window
fcCyclePosStartNetworkldleTime

Defines the start of the network idle time

See Also
fcbFRCalculateMacrotickOffset

Information
O This enumeration is initially supported by FlexCard API version S4VO0-F.

4.6.3 STRUCTURES

4.6.3.1 FCMSGBUFCFGFIFO

This structure specifies the configuration of a FIFO buffer. The FIFO message buffers are used to receive
FlexRay frames from different communication slots and allow therefore to receive more frames than
message buffers exist.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 52 of 180

Typedef struct fcMsgBufCfgFifo
{

fcDword FrameldFilter : 11;
fcDword RejectionMask :@ 11;
fcDword PayloadLengthConfigured : 7;
fcDword RejectinStaticSegment : 1;
fcDword RejectNullFrames : 1;
fcDword Reserved;

}fcMsgBufCfgFifo;

Members

FrameldFilter
Defines the acceptance filter used for frame id rejection. A zero value means that no frame is
rejected.

RejectionMask
Specifies the relevant bits used for rejection filtering.

PayloadLengthConfigured
Defines the maximum number of 2-byte payload words received.

RejectInStaticSegment
Set this flag to 1 to reject all received static frames of the FIFO. A zero value deactivates the
FIFO static segment rejection. This feature is not available for FlexCard Cyclone | Card.

RejectNullFrames
Set this flag to 1 to reject all received null frames of the FIFO. A zero value deactivates the
FIFO null frame rejection. This feature is not available for FlexCard Cyclone | Card.

Reserved
Reserved for future use.

Information

Modifying the FIFO configuration may affect the ability to receive all frames (e.g.
setting the RejectinStaticSegment flag to 1 will disable the FlexCard to monitor
frames in the static segment). Configuring (fcbFRConfigureMessageBuffer) the
FIFO is only possible when the communication controller is in its configuration

state, fcStateConfig. A reconfiguration (fcbFRReconfigureMessageBuffer) is not

allowed for this buffer type.

See Also
fcMsgBufCfg

Example

// Configure fifo receive buffers
// -> Channels A+B, all frames (including null frames) on every cycles

fcMsgBufCfg cfg;

cfg.Type = fcMsgBufFifo;
cfg.ChannelFilter = fcChannelBoth;
cfg.CycleCounterFilter = 0;

cfg.Fifo.FrameldFilter = 0;
cfg.Fifo.RejectionMask 0;
cfg.Fifo.PayloadLengthConfigured
cfg.Fifo.RejectInStaticSegment =
cfg.Fifo.RejectNullFrames = 0;

= 127;
0;

unsigned int bufferldx = 0;
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,fcCCl,&bufferldx,cfg);

46.3.2 FCMSGBUFCFGRX
This structure specifies the configuration of a receive message buffer. This buffer type should be used to

3-0009-0S01-D03_API Documentation_D1V12-F.doc

analyse a specific communication slot (=frame id).

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 53 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcMsgBufCfgRx
{

fcDword Frameld : 11;
fcDword PayloadLengthConfigured : 7;
fcDword PayloadLengthMax : 7;
fcDword RxAcknowledgeEnable: 1;
fcDword Reserved;

} fcMsgBufCfgRx;

Members
Frameld
Defines the slot (=frame id) to be received in this message buffer. With the function
fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring is active.
PayloadLengthConfigured
Defines the number of 2-byte payload words to be received. This parameter can be changed
while monitoring is active. To do so, call the function fcbFRReconfigureMessageBuffer and set
this parameter with a value between 0 and PayloadLengthMax. The reconfiguration of this
parameter for message buffers assigned to the static segment is not allowed.
PayloadLengthMax
Defines the maximum payload reserved for this buffer in the message ram. This E-Ray specific
parameter sets the range for the payload reconfiguration.
This parameter can not be changed while monitoring is active.
RxAcknowledgeEnable
Enables message buffer interrupt. This flag must be set to 1 to allow the function fcbReceive to
get the received frame. This parameter can be changed while monitoring is active. To do so,

call the function fcbFRReconfigureMessageBuffer.
Reserved

Reserved for future use

See Also
fcMsgBufCfg

46.3.3 FCMSGBUFCFGTX

This structure specifies the configuration of a transmit message buffer. This buffer type is used to transmit a
frame on a specific communication slot.

Typedef struct fcMsgBufCfgTx
{

fcDword Frameld : 11;
fcDword PayloadlLength : 7;
fcDword PayloadLengthMax : 7;
fcDword PayloadPreamblelndicator : 1;
fcDword SyncFramelndicator : 1;
fcDword StartupFramelndicator : 1;
fcDword TxAcknowledgeEnable: 1;
fcMsgBufTxMode TransmissionMode;
fcDword TxAcknowledgeShowNullFrames : 1;
fcDword TxAcknowledgeShowPayload : 1;
fcDword Reserved : 29;

} fcMsgBufCfgTx

Members

Frameld
Defines the slot (=frame id) assigned to the transmit message buffer. With the function
fcbFRReconfigureMessageBuffer, this parameter can be changed while monitoring is active.

PayloadLength
Defines the number of 2-byte payload words to be transmitted. This parameter can be changed
while monitoring is active. To do so, call the function fcbFRReconfigureMessageBuffer and set
this parameter with a value between 0 and PayloadLengthMax. The reconfiguration of this
parameter for message buffers assigned to the static segment is not allowed.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 54 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

PayloadLengthMax
Defines the maximum payload reserved for this buffer in the message ram. This E-Ray specific
parameter sets the range for the payload reconfiguration. This parameter can not be changed
while monitoring is active.

PayloadPreamblelndicator
This parameter is protocol specific. For more information, refer to FlexRay Protocol
Specification. With the function fcbFRReconfigureMessageBuffer, this parameter can be
changed while monitoring is active.

SyncFramelndicator
Set this flag to 1 to indicate that the frame is a sync frame. This parameter can not be changed
while monitoring is active.

StartupFramelndicator
Set this flag to 1 to indicate that the frame is a start-up frame. This parameter_can not be
changed while monitoring is active.

TxAcknowledgeEnable
Set this flag to 1 to get an acknowledge packet (fcTxAcknowledgePacket) once a frame is
transmitted (includes null frames).
With the function fcbFRReconfigureMessageBuffer, this parameter can be changed while
monitoring is active. This feature is only available on FlexCard based on E-Ray communication
controller.

TransmissionMode
Type of transmission (refer to fcMsgBufTxMode).
With the function fcbFRReconfigureMessageBuffer, this parameter can be changed while
monitoring is active.

TxAcknowledgeShowNul IFrames
Set this flag to 1 to get TxAchnowledge packet for transmitted null frames. This flag is only
evaluated if the TxAcknowledgeEnable flag is set.

TxAcknowledgeShowPayload
Set this flag to 1 to get the payload of the transmitted frame. The payload length of generated
TxAchnowledge packet will otherwise be set to zero. This flag is only evaluated if the
TxFrameEnable flag is set.

Reserved
Reserved for future use

See Also

fcMsgBufCfg

46.34 FCMSGBUFCFG
This structure describes the configuration of a message buffer.

Typedef struct fcMsgBufCfg
{

fcMsgBufType Type;
fcChannel ChannelFilter;
fcDword CycleCounterFilter - 7;

union
fcMsgBufCfgFifo Fifo;
fcMsgBufCfgRx RX;
fcMsgBufCfgTx Tx;
}:

fcDword Reserved[2];

} fcMsgBufCfg;

Members

Type
Defines the buffer type (FIFO, receive or transmit buffer)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 55 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

ChannelFilter
Defines the channel(s) assigned to this buffer. With the function
fcbFRReconfigureMessageBuffer, this parameter can only be changed while monitoring is
active for receive and transmit buffer. For the configuration of a transmit or a receive message
buffer assigned to a dynamic frame, only fcChannelA or fcChannelB is allowed.

CycleCounterFilter
Defines the filter used by the message buffer for cycle counter filtering. A zero value means
that no cycle counter filtering is used. The cycle counter filter is composed of two parameters.
The first one determines the cycle repetition and the second one the offset (the first cycle). The
cycle repetition must be given in the form of 2* where x is a number between 0 and 7. The
offset must be less than the cycle repetition value. The two values are added. With the function
fcbFRReconfigureMessageBuffer, this parameter can only be changed while monitoring is
active for receive and transmit buffer.

Fifo
FIFO buffer configuration

Rx

Receive buffer configuration
Tx

Transmit buffer configuration
Reserved

Reserved for future use

See Also

fcbFRConfigureMessageBuffer, fcoFRReconfigureMessageBuffer, fcbFRGetMessageBuffer,
fcMsgBufType, fcMsgBufCfgFifo, fcMsgBufCfgRx, fcMsgBufCfgTx

Example

// The TfTollowing code configures a transmit buffer, which only transmits on cycles
6,14,22,30, ..

fcMsgBufCfg cfg;

cfg.Type = fcMsgBufTx;

cfg.ChannelFilter = fcChannelA;

// Repetition: each 8 cycles
// Offset: 6 (First cycle will be cycle number 6)

cfg.

cfg.
cfg.
cfg.
cfg.
cfg.
cfg.
cfg.
cfg.

CycleCounterFilter = 0x8 + Ox6;

Tx.Frameld = 61;

Tx.PayloadLength = 10;

Tx.PayloadLengthMax = 127;
Tx.PayloadPreamblelndicator = O;
Tx.SyncFramelndicator = 0;
Tx.StartupFramelndicator = 0O;
Tx.TxAcknowledgeEnable= 0;
Tx.TransmissionMode = fcMsgBufTxSingleShot;

unsigned int bufferldx = O;
fcError e = fcbFRConfigureMessageBuffer(hFlexCard, fcCCl,&bufferldx,cfg);

4.6.3.5 FCCCTIMERCFG
This structure describes the configuration of a communication controller timer.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 56 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcCcTimerCfg

fcDword ContinuousMode : 1;
fcDword CycleCounterFilter - 7;
fcDword MacrotickOffset : 14;

} fcCcTimerCfg;

Members
ContinuousMode
Defines the communication controller timer mode. Set to 1 for continuous mode or 0 for single-
shot mode.

CycleCounterFilter
Defines the filter used by the cc timer for cycle counter filtering. A zero value means that no
cycle counter filtering is used. The cycle counter filter is composed of two parameters. The first
one determines the cycle repetition and the second one the offset (the first cycle). The cycle
repetition must be given in the form of 2*x where x is a number between 0 and 7. The offset

must be less than the cycle repetition value.
MacrotickOffset

Defines the macrotick offset from the beginning of the cycle when the cc timer interrupt has to
occur. The cc timer interrupt occurs at this offset for each cycle of the cycle counter filter.

See Also
fcbFRSetCcTimerConfig, fcoFRGetCcTimerConfig, fcbFRCalculateMacrotickOffset

Information
Q This structure is initially supported by FlexCard API version S4VO0-F.

4.6.4 FCBREINITIALIZECCMESSAGEBUFFER

This function re-initializes the message buffer configuration of the specified bus type and communication
controller index. After calling this function the communication controller does not send old payload data.
Re-initialization of message buffers is only allowed if the communication controller is in configuration state.

fcError fcbReinitializeCcMessageBuffer(
fcHandle hFlexCard,
fcBusType BusType,

fcCC CC
)
Paramaters
hFlexCard
[IN] Handle to a FlexCard
BusType

[IN] The bus type.
cc

[IN] Index of the communication controller.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 57 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information
O This function is initially supported by FlexCard API version S4VO0-F.

4.6.5 FCBGETNUMBERCCS

This function reads the number of the various communication controllers which are available on the
FlexCard.

TfcError fcbGetNumberCcs(
fcHandle hFlexCard,
fcNumberCC* pNumberCC

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
pNumberCC

[OUT] Pointer to the structure of the available communication controller numbers.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Example

FfcNumberCC numberCC;

fcError e = fcbGetNumberCcs(hFlexCard, &numberCC);
if (0 == ¢e)

printf(“Communication controllers: FlexRay: %d CAN: %d LIN: %d MOST: %d™,
numberCC->FlexRay, numberCC->CAN, numberCC->LIN, numberCC->MOST);

}

Information
O This function is initially supported by FlexCard API version S4VO0-F.

4.6.6 FCBSETCONTINUEONPACKETOVERFLOW

This function configures the packet overflow handling of the FlexCard. The FlexCards default behaviour is
to stop the monitoring if a buffer overflow was detected. This function can configure the FlexCard to
continue with the monitoring when an amount of free RAM space is available again. An error packet
fcErrFlexCardOverflow is generated in both cases.

fcError fcbSetContinueOnPacketOverflow(
fcHandle hFlexCard,
bool bContinue

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
bContinue

[IN] Set this flag to true to continue the monitoring in case of a packet buffer overflow being
detected when RAM space is available again. Set to false to stop the monitoring.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 58 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Example

// Configure the FlexCard to continue on a message buffer overflow
fcError e = fcbSetContinueOnPacketOverflow (hFlexCard, true);

if (0 == ¢e)

{

printf(“FlexCard will continue receiving after a message buffer overflow.”);

Information
0 This function is initially supported by FlexCard API version S4V0-F.

4.6.7 FCBGETCURRENTTIMESTAMP

This function returns the current time stamp of the FlexCard device and the correlated performance counter
value of the operating system.

fcError fcbGetCurrentTimeStamp(
fcHandle hFlexCard,
fcDword* pTimeStamp,
fcQuad* pPerformanceCounter

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
pTimeStamp

[OUT] Current time stamp
pPerformanceCounter

[OUT] Correlated performance counter

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcQuad
Information
o This function is initially supported by FlexCard API version S4VO0-F.
4.6.8 FCBRESETTIMESTAMP

This function sets the FlexCard timestamp to 0.

TfcError fcbResetTimestamp (
fcHandle hFlexCard
)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 59 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Parameters
hFlexCard

[IN] Handle to a FlexCard.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Example
fcError e = fcbResetTimestamp(hFlexCard);
if (0 ==¢e)
{
printf(“Timestamp was reset.”);
}
Information
Q This function is initially supported by FlexCard API version S4VO0-F.

4.7 TRIGGER CONFIGURATION

The FlexCard is equipped with a trigger interface which provides two trigger lines. The FlexCard Cyclone Il
(SE) offers one IN and one OUT line. Via the IN trigger line it has the ability to receive trigger events and
forward them to the user application. This feature allows e.g. a synchronization of different bus analyzers.
The trigger lines of the FlexCard PMC (II) may be configured as IN or OUT. To configure and activate this
feature, use the following structures and functions. The trigger event data is received as
fcTriggerinfoPacket (Obsolete) or fcTriggerExIinfoPacket with the fcbReceive function.

The following table lists the supported triggers during asynchronous and synchronous monitoring.

Trigger Supported in Asynch-Mode Supported in Synch-Mode
fcTriggerinOnSWPulse OK OK
fcTriggerinONnSWTimer OK OK
fcTriggerOutOnPulse OK OK
fcTriggerOutOnCycle - OK
fcTriggerOutOnSlotChX - OK
fcTriggerOutOnSlotinCycleChX - OK
fcTriggerOutOnCycleStart - OK
fcTriggerOutOnErrorDetected - OK
fcTriggerOutOnErrorX - OK
fcTriggerOutOnStartupCompleted - OK
fcTriggerOutOnStartDynamicSegment - OK
fcTriggerPMCIn OK OK
fcTriggerPMCOutOnPulse OK OK
fcTriggerPMCOutOnErrorDetected - OK
fcTriggerPMCOutOnStartupCompleted - OK
fcTriggerPMCOutOnCycleStart - OK

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 60 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.7.1 STRUCTURES

4.7.1.1 FCTRIGGERCONFIGURATIONEX

This structure configures the triggers of the FlexCard. Using the parameter Condition several triggers
can be enabled. Therefore the enumeration fcTriggerConditionEx should be used. To set more than one
trigger condition the conditions available in fcTriggerConditionEx must be binary OR-ed. Setting
Condition to zero resets all triggers. In case you add additional trigger conditions, they have to be binary
OR-ed with the former ones. Otherwise the previous settings will be reset. Some conditions need additional
parameters:

The condition fcTriggerln demands to set the parameter onEdge.

The condition fcTriggerinONnSWTimer demands to set the parameter onTimePeriod.

The condition fcTriggerOutOnCycle demands to set the parameter onCycle.

The condition fcTriggerOutOnSlotChA demands to set the parameter onS10tChA.

The condition fcTriggerOutOnSlotChB demands to set the parameter onS1otChB.

The condition fcTriggerOutOnSlotinCycleChA demands to set the parameters onS1otChA and onCycle.
The condition fcTriggerOutOnSlotinCycleChB demands to set the parameters onS1otChB and onCycle.
Please note that the configurations of FlexCard PMC (ll) trigger lines are described in chapter 8 Additional
PMC (Il) card API.

Typedef struct fcTriggerConfigurationEx

fcDword Condition;
fcDword onEdge;
fcDword onCycle;
fcDword onSlotChA;
fcDword onSlotChB;
fcDword onTimePeriod;
fcDword Reservedl[4];

// for PMC (11) only:
fcDword TriggerLineToConfigure;
fcCC TriggerGeneratingCC;
fcDword Reserved2[4];

} fcTriggerConfigurationEx;

Members

Condition
This parameter can be set to zero to disable all trigger conditions. To configure specific
conditions this parameter can be set to one or an OR-ed combination of given trigger
conditions in the enumeration set fcTriggerConditionEx.

onEdge
This parameter has to be set when the condition fcTriggerInEnable is chosen.
Valid values are 0 = falling edge and 1 = rising edge.

onCycle
This parameter has to be set when at least on of the conditions fcTriggerOutOnCycle,
fcTriggerOutOnSlotinCycleChA and fcTriggerOutOnSlotInCycleChB are chosen.

Valid values range from 0 to 63.

onS1otChA
This parameter has to be set when at least on of the conditions fcTriggerOutOnSIotChA or
fcTriggerOutOnSlotinCycleChA are chosen.

Valid values range from 1 to 2047.
onSlotChB
This parameter has to be set when at least on of the conditions fcTriggerOutOnSIlotChB or
fcTriggerOutOnSlotinCycleChB are chosen.
Valid values range from 1 to 2047.
onTimePeriod

This parameter is only used in timer mode. Every TimePeriod milliseconds.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 61 of 180

Reservedl[4]

Reserved Dwords for possible later use.
TriggerLineToConfigure

(PMC (1) only) This parameter sets the trigger line which should be configured.

Valid values range from 1 to 2.
TriggerGeneratingCC

(PMC (1) only) This parameter has to be set when a CC dependent trigger condition was set.

Valid values are fcCC1 to fcCC4.
Reserved2[4]

(PMC (1) only) Reserved Dwords for possible later use.

See Also
fcbSetTrigger, fcTriggerConditionEx, fcTriggerConditionPMC

4.7.2 ENUMERATIONS

4.7.2.1 FCTRIGGERCONDITIONEX
This enumeration defines the conditions available for a trigger configuration.

Typedef enum fcTriggerConditionEx

A signal is generated on the output trigger line at each start of a set FlexRay cycle.
fcTriggerOutOnSlotChA

A signal is generated on the output trigger line at each start of a set slot on channel A.

fcTriggerlin = 0x00000002,
fcTriggerOutOnPulse = 0x00000004,
fcTriggerInOnSWPulse = 0x00000008,
fcTriggerInONSWT imer = 0x00000010,
fcTriggerOutOnCycle = 0x00000040,
fcTriggerOutOnSlotChA = 0x00000080,
fcTriggerOutOnSlotChB = 0x00000100,
fcTriggerOutOnSlotInCycleChA = 0x00000200,
fcTriggerOutOnSlotinCycleChB = 0x00000400,
fcTriggerOutOnCycleStart = 0x00010000,
fcTriggerOutOnErrorDetected = 0x00020000,
fcTriggerOutOnStartupCompleted = 0x00040000,
fcTriggerOutOnStartDynamicSegment = 0x00080000,
fcTriggerOutOnErrorSFBM = 0x00100000,
fcTriggerOutOnErrorSFO = 0x00200000,
fcTriggerOutOnErrorCCF = 0x00400000,
fcTriggerOutOnErrorSBVA = 0x00800000,
fcTriggerOutOnErrorPERR = 0x01000000,
fcTriggerOutOnErrorEDA = 0x02000000,
fcTriggerOutOnErrorLTVA = 0x04000000,
TfcTriggerOutOnErrorTABA = 0x08000000,
fcTriggerOutOnErrorEDB = 0x10000000,
fcTriggerOutOnErrorLTVB = 0x20000000,
fcTriggerOutOnErrorTABB = 0x40000000,
fcTriggerOutOnErrorSBVB = 0x80000000,
}fcTriggerConditionEx;
Members
fcTriggerlin
A trigger packet is generated as soon as the set edge (falling/rising) is detected on the input

s trigger line.

X fcTriggerOutOnPulse

2 A signal is generated on the output trigger line as soon as the condition is set to the driver.

5 fcTriggerInOnSWPulse

% A trigger packet is generated as soon as the condition is set to the driver.

g fcTriggerInOnSWTimer

% A trigger packet is generated by a set time interval.

g fcTriggerOutOnCycle

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 62 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcTriggerOutOnSlotChB

A signal is generated on the output trigger line at each start of a set slot on channel B.
fcTriggerOutOnSlotinCycleChA

A signal is generated on the output trigger line at each start of a set slot in a set cycle on
channel A.
fcTriggerOutOnSlotinCycleChB
A signal is generated on the output trigger line at each start of a set slot in a set cycle on
channel B.
fcTriggerOutOnCycleStart
A signal is generated on the output trigger line at a cycle start.
fcTriggerOutOnErrorDetected
A signal is generated on the output trigger line at a detected error.
fcTriggerOutOnStartupCompleted
A signal is generated on the output trigger line at a completed startup.
fcTriggerOutOnStartDynamicSegment
A signal is generated on the output trigger line at the start of the dynamic segment.
fcTriggerOutOnErrorSFBM
A signal is generated on the output trigger line at error SFBM (sync frame below minimum).
fcTriggerOutOnErrorSFO
A signal is generated on the output trigger line at error SFO (sync frame overflow).
fcTriggerOutOnErrorCCF
A signal is generated on the output trigger line at error CCF (clock correction failure).
fcTriggerOutOnErrorSBVA
A signal is generated on the output trigger line at error SBVA (slot boundary violation channel
A).
chrig)gerOutOnErrorPERR
A signal is generated on the output trigger line at error PERR (parity error).
fcTriggerOutOnErrorEDA
A signal is generated on the output trigger line at error EDA (error detected on channel A).
fcTriggerOutOnErrorLTVA
A signal is generated on the output trigger line at error LTVA (latest transmit violation channel
A).
chrig)gerOutOnErrorTABA
A signal is generated on the output trigger line at error TABA (transmission across boundary
channel A).
fcTriggerOutOnErrorEDB
A signal is generated on the output trigger line at error EDB (error detected on channel B).
fcTriggerOutOnErrorLTVB
A signal is generated on the output trigger line at error LTVB (latest transmit violation channel
B).
chrig)gerOutOnErrorTABB
A signal is generated on the output trigger line at error TABB (transmission across boundary
channel B).
fcTriggerOutOnErrorSBVB
A signal is generated on the output trigger line at error SBVB (slot boundary violation channel
B).

See Also

fcbSetTrigger, fcTriggerConfigurationEx

Remarks

In the DebugAsynchron mode only the conditions fcTriggerlin, fcTriggerOutOnPulse,
fcTriggerInOnSWTimer and fcTrigger InOnSWPulse can be used.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 63 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.7.3 FCBSETTRIGGER

This function configures and starts/stops triggers. For further information, refer to the structure

fcTriggerConfigurationEx.

TfcError fcbSetTrigger(
fcHandle hFlexCard,
fcTriggerConfigurationEx cfg

)

Parameters
hFlexCard
[IN] Handle to a FlexCard
cfg
[IN] The trigger configuration

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

See Also
fcTriggerConfigurationEx, fcTriggerConditionEx

Example for cardbus FlexCards

// Generate a pulse at the beginning of any detected error and cycle 3
fcTriggerConfigurationEx triggerCfg;

memset(&triggerCfg, 0, sizeof(fcTriggerConfigurationEx));
triggerCfg.Condition = 0;

triggerCfg.Condition |= (fcDword)fcTriggerOutOnErrorDetected;
triggerCfg.Condition |= (fcDword)fcTriggerOutOnCycle;
triggerCfg.onCycle = 3;

// Generate a trigger packet all 1000 milliseconds
triggerCfg.Condition |= (fcDword)fcTriggerInOnSWTimer;
triggerCfg.onTimePeriod = 1000;

fcError e = fcbSetTrigger(hFlexCard,triggerCfg);

Example for PMC FlexCards

// Generate a pulse on trigger line 1 when the communication controller 2
// completed its startup

fcTriggerConfigurationEx triggerCfg;

memset(&triggerCfg, 0, sizeof(fcTriggerConfigurationEx));
triggerCfg.Condition = fcTriggerPMCOutOnStartupCompleted;
triggerCfg.TriggerLineToConfigure = 1;

triggerCfg.TriggerGeneratingCC = fcCC2;

fcError e = fcbSetTrigger(hFlexCard,triggerCfg);

// Generate a trigger packet when a pulse on trigger line 2 is detected
triggerCfg.Condition = fcTriggerPMCIn;

triggerCfg.TriggerLineToConfigure = 2;

fcError e = fcbSetTrigger(hFlexCard,triggerCfg);

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 64 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.8 EVENT

4.8.1 ENUMERATIONS

48.1.1 FCNOTIFICATIONTYPE

This enumeration defines different notification types. These types are used in the functions
fcbSetEventHandleV2 and fcbSetEventHandleSemaphore to specify on which kind of event the application
has to be notified.

Typedef enum fcNotificationType

fcNotificationTypeCycleStarted 1

fcNotificationTypeFRCycleStarted = fcNotificationTypeCycleStarted,
fcNotificationTypeTimer =2,

fcNotificationTypeWakeup = 3,

fcNotificationTypeFRWakeup = fcNotificationTypeWakeup,
fcNotificationTypeCcTimer = 12,

fcNotificationTypeFRCcTimer fcNotificationTypeCcTimer,

} fcNotifyType;

Members

fcNotificationTypeCycleStarted

fcNotificationTypeFRCycleStarted
Used to notify that a new cycle has started and that probably new data has been received.

fcNotificationTypeTimer
Used to notify that the timer interval has elapsed. This notification requires the internal timer of
the FlexCard to be enabled (See fcbSetTimer).

fcNotificationTypeWakeup

fcNotificationTypeFRWakeup
Used to notify that one of the transceivers has received a wakeup event (only if one of the
transceivers was in sleep mode).

fcNotificationTypeCcTimer

fcNotificationTypeFRCcTimer
Used to notify that the configured cc timer macrotick offset has elapsed. This notification
requires the E-Ray CC Timer0 to be enabled (See fcbFRSetCcTimerConfig).

See Also
fcbFRMonitoringStart, fcbSetEventHandleV2, fcbSetEventHandleSemaphore, fcbSetTimer,
fcbFRSetCcTimerConfig

4.8.2 FCBSETEVENTHANDLEV?2
This function registers an event handle for a specific notification type.

fcError fcbSetEventHandleV2(
fcHandle hFlexCard,
fcCC CC,
fcHandle hEvent,
fcNotificationType type

))

Parameters
hFlexCard

[IN] Handle to a FlexCard
CcC

[IN] Communication controller index

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 65 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

hEvent
[IN] Event handle to be registered to signal when a new cycle starts or a timer interval has
elapsed depending on the given type.

Type
[IN] The notification type for which the event has to be registered.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType

Example

// Create the event objects

HANDLE hCycleStartEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL);
fcCC eCC = fcCC1l;

// Register our event handles
fcbSetEventHandleV2(hFlexCard, eCC, hCycleStartEvent,
fcNotificationTypeFRCycleStarted);

// ...
// Use the event objects
// ...
Information
o This function is initially supported by FlexCard API version S4V2-F.
Information
Please don’t use this function with the FlexCard Linux driver, because it’'s not
async-signal safe. To avoid deadlocks with the API use the function
fcbSetEventHandleSemaphore instead.
4.8.3 FCBSETTIMER

This function enables or disables the internal FlexCard timer. To become notified when the timer interval
has elapsed, an event of type fcNotificationTypeTimer has to be registered by the function
fcbSetEventHandleV2 or fcbSetEventHandleSemaphore.

TfcError fcbSetTimer(
fcHandle hFlexCard,
bool enable,
fcDword timerlinterval

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
enable

[IN] Set to true to enable the timer and to false to disable it.
timerinterval
[IN] Specifies the timer period in ys

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 66 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType, fcbSetEventHandleV2, fcbSetEventHandleSemaphore

Example

// Create the event objects

HANDLE hCycleStartEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL);
HANDLE hTimerEvent = ::CreateEvent(NULL,FALSE,FALSE,NULL);

fcCC eCC = fcCC1l;

// Register our event handles

fcbSetEventHandleV2(hFlexCard, eCC, hCycleStartEvent,
fcNotificationTypeCycleStarted);

fcbSetEventHandleV2(hFlexCard, eCC, hTimerEvent, fcNotificationTypeTimer);

// Enable the timer (1ms Interval)
fcbSetTimer(hFlexCard, true,1000);

// ...

// Use the event objects

// ...

4.8.4 FCBNOTIFICATIONPACKET

This function generates a notification packet each time the configured timer timeout has elapsed. This timer
can be enabled / disabled by this function and the timeout can be set. The notification packets are inserted

in the stream and received through the function fcbReceive.
fcError fcbNotificationPacket(

fcHandle hFlexCard,

bool enable,

fcDword timerlinterval

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
enable

[IN] Set to true to enable the timer and to false to disable it.

timerinterval
[IN] Specifies the time-out interval, in microseconds. A packet is generated as soon as the
time-out has elapsed. The timer interval must be greater than 50us and smaller than 655350us.
The value must be rounded to 10us units.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 67 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Information
O This function is initially supported by FlexCard API version S2VO0-F.

4.9 RECEIVE

4.9.1 TYPEDEFINITIONS

4.9.1.1 FCINFOPACKET

This structure describes an information packet. This packet type informs you about the start of a new cycle.
All packets received between two consecutives info packets are part of the current cycle.

Typedef struct fclnfoPacket

fcDword CurrentCycle;
fcDword TimeStamp;
fcDword RateCorrection : 12;
fcDword OffsetCorrection : 19;
fcDword ClockCorrectionFailedCounter : 4;
fcDword PassiveToActiveCount : 5;
fcCC CC;
}fcinfoPacket;

Members
CurrentCycle
The current cycle (FlexRay Protocol Specification: vRFIHeader!CycleCount)
Timestamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was

generated.
RateCorrection

Rate correction value (two’s complement). Indicates by how many microticks the node’s cycle
length should be changed.

OffsetCorrection
Offset correction value (two’ complement). Indicates the number of microticks that are added to

the offset correction segment of the network idle time.
ClockCorrectionFailedCounter

FlexRay Protocol Specification: vClockCorrectionFailed.
PassiveToActiveCount

FlexRay Protocol Specification: vAllowPassiveToActive
ccC

The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only
one FlexRay CC is available.

Remarks
A timestamp overflow occurs after approximately 4295 seconds.

See Also
fcPacket

4912 FCFLEXRAYFRAME
This structure is equivalent to the FlexRay frame described in the FlexRay specification [3].

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 68 of 180

Typedef struct fcFlexRayFrame

fcDword ID : 11;

fcDword STARTUP : 1;
fcDword SYNC : 1;

fcDword NF : 1;

fcDword PP : 1;

fcDword R : 1;

fcDword PayloadlLength : 7;
fcDword CycleCount : 6;
fcDword HeaderCRC : 11;
fcWord* pData;

fcChannel Channel;

fcDword ValidFrame : 1;

fcDword SyntaxError : 1;

fcDword ContentError : 1;

fcDword SlotBoundaryViolation : 1;
fcDword AsyncMode : 1;

fcDword FrameCRC : 24;

fcDword TimeStamp;
fcCC CC;
} fcFlexRayFrame;

Members
ID

The frame id defines the slot in which the frame was transmitted.

(FlexRay Protocol Specification: vRF!Header!FramelD)

STARTUP
Indicates if the frame is a start up frame (=1) or not (=0)
(FlexRay Protocol Specification: vRF!Header!SuFIndicator)

SYNC
Indicates if the frame is a sync frame (=1) or not (=0)
(FlexRay Protocol Specification: vRF!Header!SyFIndicator)

NF
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it
indicates that pData contains valid data.
(FlexRay Protocol Specification: vRF!Header!NFIndicator)

PP
The payload preamble indicator indicates whether or not an optional vector is contained within
the payload segment of the frame transmitted. In the static segment, it indicates the presence
of a network management vector at the beginning of the payload. In the dynamic segment it
indicates the presence of a message id at the beginning of the payload, (FlexRay Protocol
Specification: vRF!Header!PPIndicator).

R
Reserved bit (FlexRay Protocol Specification: vRF!Header!Reserved)

PayloadLength
Defines the number of 16 bit words contained in pData
(FlexRay Protocol Specification: vRF!Header!Length)

CycleCount
The cycle in which the frame was received. (FlexRay Protocol Specification:
vRF!Header!CycleCount)

HeaderCRC
The header CRC containing the cyclic redundancy check code is computed over the sync
frame indicator, the start up frame indicator, the frame id and the payload length.(FlexRay
Protocol Specification: vRF!Header!HeaderCRC)

pData
The pointer to the payload data. The payload is given in 16 bit words.
(FlexRay Protocol Specification: vRF!Payload)

Channel
The channel (A or B) on which the frame was received.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 69 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

(FlexRay Protocol Specification: vRF!Channel)
ValidFrame
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification:
vSS!ValidFrameA or vSS!ValidFrameB depends on Channel - Table 9-2: Slot status
interpretation)
SyntaxError
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect).
(FlexRay Protocol Specification: vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel)
ContentError
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect).
(FlexRay Protocol Specification: vSS!ContentErrorA or vSS!ContentErrorB depends on
Channel)
SlotBoundaryViolation
If a slot boundary violation was observed, this parameter is set to 1 (FlexRay Protocol
Specification: vSS!BviolationA or vSS!BviolationB depends on Channel)
AsyncMode
If the packet was generated by the asynchronous debug mode, this parameter is set to 1.
FrameCRC
If the packet was generated by the asynchronous debug mode, the FrameCRC contains the
cyclic redundancy check code is computed over complete frame. In synchronous monitoring
mode, this parameter is not set.

TimeStamp
The FlexCard time stamp (1 us resolution). The timestamp marks the begin of the reception of
the frame.

cC

The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only
one FlexRay CC is available.

See Also
fcPacket
Information
The payload length is a multiple of 16 bit words. The payload data is also given in
16 bit words.
49.1.3 FCTXACKNOWLEDGEPACKET

This structure provides information about a transmit acknowledge packet. Transmit acknowledge packets
are used to inform the user when a frame is transmitted.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 70 of 180

Typedef struct fcTxAcknowledgePacket

fcDword Bufferld;
fcDword TimeStamp;
fcDword CycleCount;

fcDword ID : 11;
fcDword STARTUP : 1;
fcDword SYNC : 1;
fcDword NF : 1;
fcDword PP : 1;
fcDword R : 1;
fcDword PayloadlLength : 7;
fcDword ValidFrame : 1;
fcDword SyntaxError : 1;
fcDword ContentError : 1;
fcDword HeaderCRC : 11;
fcWord* pData;
fcChannel Channel;
fcCC CC;

} fcTxAcknowledgePacket;

Members
Bufferld

The buffer id used to transmit the frame (equivalent to the buffer id returned by the function

fcbFRConfigureMessageBuffer).

TimeStamp
The FlexCard time stamp (1 ps resolution). The timestamp marks the beginning of the
transmission of the frame.

CycleCount
Indicates the cycle in which the frame was transmitted. (FlexRay Protocol Specification:
vTF!Header!CycleCount)

ID

The frame id defines the slot in which the frame was transmitted.
STARTUP

Indicates if the frame was a start up frame (=1) or not (=0)

SYNC
Indicates if the frame was a sync frame (=1) or not (=0)

NF
Set to 0, the null frame indicator indicates that pData contains no valid data. Set to 1, it
indicates that pData contains valid data.

PP
The payload preamble indicator indicates whether or not an optional vector is contained within
the payload segment of the frame transmitted. In the static segment, it indicates the presence
of a network management vector at the beginning of the payload. In the dynamic segment it
indicates the presence of a message id at the beginning of the payload.

R

Reserved bit
PayloadLength
Defines the number of 16 bit words contain in pData
ValidFrame
If a valid frame was received, this parameter is set to 1 (FlexRay Protocol Specification:
vSS!ValidFrameA or vSS!ValidFrameB depends on Channel - Table 9-2: Slot status
interpretation)
SyntaxError
If a syntax error was observed, this parameter is set to 1 (frame is syntactically incorrect).
(FlexRay Protocol Specification: vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel)
ContentError
If a content error was observed, this parameter is set to 1 (frame is semantically incorrect).
(FlexRay Protocol Specification: vSS!ContentErrorA or vSS!ContentErrorB depends on
Channel)

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 71 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

HeaderCRC

The header CRC contains the cyclic redundancy check code is computed over the sync frame

indicator, the start up frame indicator, the frame id and the payload length.
pData

The pointer to the payload data. The payload is given in 16 bit words.
Channel

The channel (A or B) on which the frame was transmitted.

(FlexRay Protocol Specification: vRF!Channel)

CcC
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only
one FlexRay CC is available. This parameter will always be set to fcCC2 for used SelfSync
feature packets.
See Also
fcPacket
4914 FCERRPOCERRORMODECHANGEDINFO

This structure provides additional information about the FcErrPOCErrorModeChanged error.

Typedef struct FcErrPOCErrorModeChangedInfo

fcState State;
}cErrPOCErrorModeChangedinfo;

Members
State
Contains the new POC error mode (HALT, NORMAL_ACTIVE or NORMAL_PASSIVE)

See Also
fcErrorPacket

49.1.5 FCERRSYNCFRAMESINFO
This structure provides additional information about the TcErrSyncFramesBelowMinimum
FfcErrSyncFrameOverflow errors.

Typedef struct fcErrSyncFrameslinfo

fcDword SyncFramesEvenA : 4;
fcDword SyncFrameskEvenB : 4;
fcDword SyncFramesOddA : 4;
fcDword SyncFramesOddB : 4;
}fcErrPOCErrorModeChangedinfo;

Members

SyncFramesEvenA

Valid sync frame received and transmitted on channel A in even communication cycles
SyncFramesEvenB

Valid sync frame received and transmitted on channel B in even communication cycles
SyncFramesOddA

Valid sync frame received and transmitted on channel A in odd communication cycles
SyncFrames0OddB

Valid sync frame received and transmitted on channel B in odd communication cycles

See Also
fcErrorPacket

4.9.1.6 FCERRCLOCKCORRECTIONFAILUREINFO
This structure provides additional information about the FcErrClockCorrectionFailure error.

and

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 72 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcErrClockCorrectionFailurelnfo

fcDword MissingRateCorrection : 1;
fcDword RateCorrectionLimitReached : 1;

fcDword OffsetCorrectionLimitReached : 1;
fcDword MissingOffsetCorrection : 1;

fcDword SyncFrameskEvenA : 4;
fcDword SyncFramesEvenB : 4;
fcDword SyncFramesOddA : 4;
fcDword SyncFramesOddB : 4;
}fcErrClockCorrectionFailurelnfo;

Members
MissingRateCorrection

Is set to 1 if no rate correction can be performed because no pairs of even/odd sync frames

were received.
RateCorrectionLimitReached

Is set to 1 if the maximum rate correction limit is reached.
OffsetCorrectionLimitReached

Is set to 1 if the maximum offset correction limit is reached.
MissingOffsetCorrection

Is set to 1 if no offset correction can be performed because no sync frames were received.
SyncFramesEvenA

Valid sync frame received and transmitted on channel A in even communication cycles
SyncFramesEvenB

Valid sync frame received and transmitted on channel B in even communication cycles
SyncFramesOddA

Valid sync frame received and transmitted on channel A in odd communication cycles
SyncFrames0OddB

Valid sync frame received and transmitted on channel B in odd communication cycles

See Also
fcErrorPacket
4917 FCERRSLOTINFO

This structure provides additional information about the FcErrSyntax, fcErrContent,
fcErrSlotBoundaryViolation, fcErrTransmissionAcrossBoundary,
fcErrLatestTransmitViolation fcErrSyntaxSW, fcErrSlotBoundaryViolationSWw,
FfcErrTransmissionConflictSW, fcErrSyntaxNIT and fcErrSlotBoundaryViolationNIT
errors..

Typedef struct fcErrSlotinfo

fcChannel Channel;
fcDword SlotCount;
}fcErrSlotinfo;

Members
Channel

The channel on which the error was observed.
SlotCount

The approximate slot count when the error occurred.

See Also
fcErrorPacket
49.1.8 FCERRORPACKET

This structure provides information about an error packet.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 73 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcErrorPacket

fcErrorPacketFlag Flag;
fcDword TimeStamp;
fcDword CycleCount;

union Additionallnfo

TcErrPOCErrorModeChangedInfo ErrPOCErrorModeChangedinfo;
fcErrSyncFrameslinfo ErrSyncFramesinfo;
fcErrSlotinfo ErrSlotinfo;
fcErrClockCorrectionFailurelnfo ErrClockCorrectionFailurelnfo;
}AdditionalInfo;
fcCC CC;

fcDword Reserved;
}fcErrorPacket;

Members
Flag

Error type
TimeStamp
The FlexCard time stamp (1 ups resolution). Indicates the time at which the packet was
generated.
CycleCount
The cycle in which the error occurred.
Additionallnfo
e ErrPOCErrorModeChangedInfo
Additional information about the fcErrPOCErrorModeChanged error.
e ErrSyncFramesinfo
Additional information about the fcErrSyncFramesBelowMinimum , fcErrSyncFrameOverflow
errors
e ErrSlotinfo
Additional information about the fcErrSyntax, fcErrContent, fcErrSlotBoundaryViolation,
fcErrTransmissionAcrossBoundary and fcErrLatestTransmitViolation errors
e ErrClockCorrectionFailurelnfo

Additional information about the fcErrClockCorrectionFailure error.
CcC

The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only

one FlexRay CC is available.
Reserved

Reserved for future use.

See Also
fcPacket

49.1.9 FCSTATUSWAKEUPINFO
This structure provides additional information about the cStatusWakeupStatus status.

Typedef struct fcStatusWakeuplnfo

fcWakeupStatus WakeupStatus;
} fcStatusWakeuplInfo;

Members
WakeupStatus

Current wakeup state.

See Also
fcStatusPacket

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 74 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.9.1.10 FCSTATUSPACKET
This structure provides information about a status packet.

Typedef struct fcStatusPacket

fcStatusPacketFlag Flag;
fcDword TimeStamp;
fcDword CycleCount;

union Additionallnfo

fcStatusWakeupInfo StatusWakeuplinfo;
J}AdditionalInfo;
fcCC CC;
fcDword Reserved[2];
}fcStatusPacket;

Members
Flag
Status type
TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was

generated.
CycleCount

The cycle in which the status has changed.
Additionallnfo
StatusWakeuplInfo

Additional information about fcStatusWakeupStatus status

CcC
The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only
one FlexRay CC is available. This parameter will always be set to fcCC2 for used SelfSync

feature packets.
Reserved

Reserved for future use.

See Also
fcPacket, fcStatusPacketFlag, fcStatus\Wakeuplnfo

4.9.1.11 FCNMVECTORPACKET

This structure provides information about a network management vector. (FlexRay Protocol Specification
V2.0: Section 4.3.1 NMVector)

typedef struct fcNMVectorPacket

fcDword TimeStamp;
fcDword CycleCount;
fcDword NMVectorLength;
fcByte NMVector[12];
fcCC CC;
fcDword Reserved;

} fcNMVectorPacket;

Members

TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was
generated.

CycleCount
The cycle in which the network management vector was updated.

NMVectorLength
Length of network management vector in number of bytes. (FlexRay Protocol Specification:
gNetworkManagementVectorLength)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 75 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

NMVector

The data bytes of the network management vector.
ccC

The FlexCard CC which created this packet. This parameter will always be set to fcCC1 if only

one FlexRay CC is available.
Reserved

Reserved for future use.

See Also
fcPacket, fcCC

49112 FCNOTIFICATIONPACKET

This structure provides information about a notification packet. A notification packet is generated each time
the configured time out elapses. The generation of this packet can be controlled with the function
fcbNotificationPacket.

Typedef struct fcNotificationPacket

fcDword TimeStamp;
fcDword SequenceCounter;
fcDword Reserved;

} fcNotificationPacket;

Members
TimeStamp
The FlexCard time stamp (1 ps resolution). Indicates the time at which the packet was
generated.
SequenceCounter
This parameter is incremented each time a notification packet is generated.
Reserved

See Also
fcPacket, fcbNotificationPacket

Information
O This packet type is initially supported by FlexCard API version S2V0-F.

49.1.13 FCTRIGGEREXINFOPACKET
This structure provides information about a trigger packet.

Typedef struct fcTriggerExInfoPacket
{

fcDword Condition;
fcDword TimeStamp;
fcDword SequenceCount;
fcDword Reservedl;
fcQuad PerformanceCounter;
fcDword Edge;
fcDword TriggerLine;
fcDword reserved[4];

} fcTriggerinfoPacket;

Members
Condition
The fulfilled condition which has caused the trigger packet generation.
TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was
generated.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 76 of 180

Reservedl
Reserved for future use.
SequenceCount

Sequence count for each signal.
PerformanceCounter
Variable that receives the current performance-counter value. This value is only valid for the
trigger condition fcTriggerinOnSWTimer.
Edge
The edge on which the trigger was signalled.
TriggerLine
The trigger line which detected a trigger signal. This value is only valid for triggers of FlexCard

PMC.
Reserved[4]

Reserved for future use.

See Also
fcPacket
Information
Q This packet type is initially supported by FlexCard API version S2V2-F.
4.9.1.14 FCCANPACKET

This structure provides information about a CAN packet.

Typedef struct fcCANPacket
{

fcDword ID : 29;
fcDword Extendedld D 1;
fcDword TimeStamp;
fcDword BufferNumber : 8
fcDword DLC o 4
fcDword Direction D 1;
fcDword RemoteFrame 1
fcDword MessagelLost 1
fcDword Reserved;
fcCC CC;
fcByte Data[8];
}fcCANPacket;

Members
ID
The CAN message identifier which was received or transmitted.
Extendedld
If this flag is 1 the CAN message is an extended frame. If set to 0 it is a standard frame.
TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was

generated.
BufferNumber

Indicates the corresponding buffer number for the CAN packet.
DLC

Indicates the data length (in bytes).
Direction

This flag depends on the parameter RemoteFrame. If Direction is 0 and RemoteFrame is 0,
the CAN packet is a received data frame. If Direction is 1 and RemoteFrame is 0 the CAN
packet is a transmit acknowledge frame generated by the FlexCard. If RemoteFrame is 1, see
RemoteFrame for further description.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 77 of 180

RemoteFrame
This flag depends on the parameter Direction. If RemoteFrame is 1 and Direction is 0,
the CAN packet is a remote rx frame. If RemoteFrame is 1 and Direction is 1, the CAN
packet is a remote tx frame. If Direction is 0, see Direction for further description.
MessagelLost
If this flag is 1 the CAN communication controller has lost a message. If 0 no message has
been lost. This flag is only valid with Direction = 0.
Reserved

Reserved for future use.
ccC
The CAN communication controller on which the frame was received or transmitted.
Data
The received or transmitted data. All of the 8 data bytes can be read. The corresponding
parameter DLC indicates the length of the valid values.

See Also
fcPacket

Information
Q This packet type is initially supported by FlexCard API version S4V0-F.

4.9.1.15 FCCANERRORPACKET
This structure provides information about a CAN error packet.

Typedef struct FcCANErrorPacket
{

TcCANErrorType Type;

fcCANCcState State;

fcDword TimeStamp;

fcDword ReceiveErrorCounter;

fcDword TransmitErrorCounter;

fcCC CC;

fcDword Reserved[2];
}fcCANErrorPacket;

Members
Type
Error type
State
Communication controller state
TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was

generated.
ReceiveErrorCounter

Actual state of the Receive Error Counter. Valid values range from 0 to 127.
TransmitErrorCounter

Actual state of the Transmit Error Counter. Values values range 0 to 255.
cC

The CC on which the packet was created.
Reserved[4]

Reserved for future use.

See Also

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcPacket, fcCANErrorType, fcCANCcState

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 78 of 180

Information

O

This packet type is initially supported by FlexCard API version S4V0-F.

4.9.1.16 FCPACKET

This structure provides information about a packet.

Typedef struct fcPacket

fcPacketType Type;

union

{
fcFlexRayFrame*
fclnfoPacket*
fcErrorPacket*
fcStatusPacket*
fcTriggerInfoPacket*
fcTxAcknowledgePacket*
fcNMVectorPacket*
fcNotificationPacket*
fcTriggerExlnfoPacket*
FfcCANPacket*
FfcCANErrorPacket*

};
fcPacket* pNextPacket;
}fcPacket;

Members
Type
Type of packet.
FlexRayFrame

Pointer to the packet data.

InfoPacket

Pointer to the packet data.

ErrorPacket

Pointer to the packet data.

StatusPacket

Pointer to the packet data.

TriggerPacket

Pointer to the packet data.

TxAcknowledgePacket

Pointer to the packet data.

NMVectorPacket

Pointer to the packet data.

NotificationPacket

Pointer to the packet data.

TriggerExPacket

Pointer to the packet data.

CANPacket

Pointer to the packet data.

CANErrorPacket

pNextPacket

See Also

Pointer to the packet data.

Pointer to the next packet.

FlexRayFrame;
InfoPacket;
ErrorPacket;
StatusPacket;
TriggerPacket;
TxAcknowledgePacket;
NMVectorPacket;
NotificationPacket;
TriggerExPacket;
CANPacket;
CANErrorPacket;

The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.

The content depends on the type of packet.

If the pointer is NULL, there are no more packets available.

fcinfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, fcStatusPacket,

fcTriggerinfoPacket, fcNMVectorPacket, fcNotificationPacket, fcTriggerExinfoPacket, fcCANPacket,

fcCANErrorPacket

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co.

KG

Page 79 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.9.2 ENUMERATIONS

49.21 FCPACKETTYPE
This enumeration contains the different packet types.

Typedef enum fcPacketType
{

fcPacketTypelnfo
fcPacketTypeFlexRayFrame
fcPacketTypeError
fcPacketTypeStatus
fcPacketTypeTrigger
fcPacketTypeTxAcknowledge
fcPacketTypeNMVector
fcPacketTypeNotification
fcPacketTypeTriggerEx
fcPacketTypeCAN
fcPacketTypeCANError
}fcPacketType;

I wnnn
PRPOO~NOODWNE

PO v v v v w w ow o

Members
fcPacketTypelnfo

Frame is an info packet
fcPacketTypeFlexRayFrame

Frame is a FlexRay frame
fcPacketTypeError

Frame is an error packet
fcPacketTypeStatus

Frame is a status packet
fcPacketTypeTrigger

Frame is a trigger packet (obsolete)
fcPacketTypeTxAcknowledge

Frame is a transmit acknowledge packet
fcPacketTypeNMVector

Frame is a network management vector packet
fcPacketTypeNotification

Frame is a notification packet
fcPacketTypeTriggerkEx

Frame is a trigger packet
fcPacketTypeCAN

Frame is a CAN packet
fcPacketTypeCANError

Frame is a CAN error packet

See Also

fcPacket, fcinfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, fcStatusPacket,

fcTriggerinfoPacket, fcNMVectorPacket, fcNotificationPacket, fcTriggerExinfoPacket, fcCANPacket,

fcCANErrorPacket

4922 FCERRORPACKETFLAG
This enumeration contains the different error types reported by an error packet.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 80 of 180

Typedef enum fcErrorPacketFlag

fcErrNone = 0O,
fcErrFlexcardOverflow,
TcErrPOCErrorModeChanged,
fcErrSyncFramesBelowMinimum,
fcErrSyncFrameOverflow,
fcErrClockCorrectionFailure,
fcErrParityError,
fcErrReceiveFIFOOverrun,
fcErrEmptyFI1FOAccess,
fcErrlllegal InputBufferAccess,
fcErrlllegalOutputbufferAccess,
fcErrSyntax,
fcErrContent,
fcErrSlotBoundaryViolation,
fcErrTransmissionAcrossBoundary,
fcErrLatestTransmitViolation,
FfcErrSyntaxSw,
fcErrSlotBoundaryViolationSWw,
fcErrTransmissionConflictSWw,
FfcErrSyntaxNIT,
fcErrSlotBoundaryViolationNIT,
} fcErrorPacketFlag;

Members

fcErrNone
No error occurred

fcErrFlexcardOverflow
FlexCard buffer overflow. This error occurs if the application was too slow to receive and
process the packets. If the FlexCard is configured to stop the monitoring it is necessary to stop
and start the monitoring again. Else the FlexCard continue the monitoring when an amount of
free RAM space is available again. In such a case the FlexCard loses packets.

fcErrPOCErrorModeChanged
Protocol Operation Control error. Additional information are described in the structure

fcErrPOCErrorModeChangedinfo
fcErrSyncFramesBelowMinimum

Additional information are described in the structure fcErrSyncFramesinfo
fcErrSyncFrameOverflow

Additional information described in the structure fcErrSyncFramesinfo
fcErrClockCorrectionFailure

Additional information are described in the structure fcErrClockCorrectionFailurelnfo
fcErrParityError

Internal E-Ray error. No additional information is available
fcErrReceiveFI1FOOverrun

No additional information exists for the internal FlexCard error (fcErrorPacket.Additionallnfo is

not valid)
fcErrEmptyFI1FOAccess

No additional information exists for the internal FlexCard error
fcErrilllegal InputBufferAccess
No additional information exists for the internal FlexCard error
fcErrlllegalOutputbufferAccess
No additional information exists for the internal FlexCard error
fcErrSyntax
A syntax error was observed (frame is syntactically incorrect). (FlexRay Protocol Specification:
vSS!SyntaxErrorA or vSS!SyntaxErrorB depends on Channel) Additional information are
described in the structure fcErrSlotinfo
fcErrContent

A content error was observed (frame is semantically incorrect). (FlexRay Protocol
Specification: vSS!ContentErrorA or vSS!ContentErrorB depends on Channel) Additional
information described in the structure fcErrSlotinfo

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 81 of 180

fcErrSlotBoundaryViolation
A slot boundary violation was observed. (FlexRay Protocol Specification: vSS!BviolationA or
vSS!BviolationB depends on Channel) Additional information described in the structure

fcErrSlotinfo
fcErrTransmissionAcrossBoundary

Additional information are described in the structure fcErrSlotinfo
fcErrLatestTransmitViolation
Additional information are described in the structure fcErrSlotinfo
TfcErrSyntaxSWw
Syntax error in symbol window was observed. Additional information are described in the
structure fcErrSlotinfo.
fcErrSlotBoundaryViolationSw
Slot boundary violation in symbol window was observed. Additional information are described
in the structure fcErrSlotinfo.
fcErrTransmissionConflictSW
Transmission conflict in symbol window was observed. Additional information are described in
the structure fcErrSlotinfo.
TfCcErrSyntaxNIT
Syntax error in network idle time was observed. Additional information are described in the
structure fcErrSlotinfo.
fcErrSlotBoundaryViolationNIT
Slot boundary violation in network idle time was observed. Additional information are described
in the structure fcErrSlotinfo.

See Also
fcErrorPacket, fcErrPOCErrorModeChangedInfo, fcErrSyncFrameslinfo,
fcErrClockCorrectionFailurelnfo, fcErrSlotinfo

49.2.3 FCSTATUSPACKETFLAG
Possible hardware status flags are reported by a status packet.

Typedef enum fcStatusPacketFlag

fcStatusNone = 0,
fcStatusWakeupStatus,
fcStatusCol lisionAvoidanceSymbol,
fcStatusStartupCompletedSuccessfully,
fcStatusWakeupPatternChannelA,
fcStatusWakeupPatternChannelB,
fcStatusMTSReceivedonChannelA,
fcStatusMTSReceivedonChannelB,

} fcStatusPacketFlags;

Members
fcStatusNone

No status change.
fcStatusWakeupStatus

Wakeup status has changed
fcStatusCollisionAvoidanceSymbol

Collision avoidance symbol was received
fcStatusStartupCompletedSuccessfully

Start up has been successfully completed
fcStatusWakeupPatternChannelA

Wakeup pattern received on Channel A
fcStatusWakeupPatternChannelB

Wakeup pattern received on Channel B
fcStatusMTSReceivedonChannelA

Media Access Test Symbol received on Channel A
fcStatusMTSReceivedonChannelB

Media Access Test Symbol received on Channel B

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 82 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcPacket, fcStatusPacket, fcStatus\Wakeuplnfo

4924 FCCANERRORTYPE
This enumeration contains the different error types reported by a CAN error packet.

Typedef enum FcCANErrorType

FfcCANErrorNone = 0,
FcCANErrorStuff,
fcCANErrorForm,
TcCANErrorAcknowledge,
fcCANErrorBitl,
FfcCANErrorBitoO,
TcCANErrorCRC,
TfcCANErrorParity,
}fcCANErrorType;

Members
FfcCANErrorNone

No error occurred.
fcCANErrorStuff

More than 5 equal bits in a sequence have occurred in a part of a received message where

this is not allowed.
fcCANErrorForm
A fixed format part of a received frame has the wrong format.
fcCANErrorAcknowledge
The message the CAN communication controller transmitted was not acknowledged by

another node.
fcCANErrorBitl

During the transmission of a message (with the exception of the arbitration field), the device
wanted to send a recessive level (bit of logical value 1), but the monitored bus value was

dominant (bit of logical value 0).

TcCANErrorBitO
During the transmission of a message, the device wanted to send a dominant level (data or
identifier bit logical value 0), but the monitored bus value was recessive (data or identifier bit
logical value 1).

TcCANErrorCRC
The CRC check sum was incorrect in the message received, the CRC received for an incoming
message does not match with the calculated CRC for the received data.

fcCANErrorParity
The parity check mechanism has detected an parity error in the message RAM of the
communication controller.

See Also
fcCANErrorPacket
Information
O This enumeration is initially supported by FlexCard API version S4VO0-F.
4.9.3 FCBRECEIVE

This function reads all available packets from the FlexCard memory into a memory block allocated by the
fcBase API. The frames are stored into a linked list. To free the memory allocated by this function, use the
function fcFreeMemory with the type fcMemoryTypePacket.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 83 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbReceive(

fcHandle hFlexCard,
fcPacket** pPacket

)

Parameters
hFlexCard

[IN] Handle to a FlexCard

pPacket

[OUT] Address of the fcPacket object pointer. The memory for this structure and its content is
allocated by the fcBase API. Packets are available if the return code is 0 and pPacket is not a
null pointer.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Information

released after having processed the packets.

This function allocates memory. To prevent memory leaks the memory has to be

Example

fcPacket* pPackets

NULL;

fcError e = fcbReceive(m_hFlexCard, &pPackets);

if (0 == e)

fcPacket* pCurrentPacket = pPackets;
while (NULL != pCurrentPacket)

{

switch (pCurrentPacket->Type)

case fcPacketTypelnfo:

break;

printf(“[fcPacketTypelnfo] TimeStamp: %f Cycle: %d\n”,

(float)pCurrentPacket->InfoPacket->TimeStamp* 0.000001,

pCurrentPacket->InfoPacket->CurrentCycle);

case fcPacketTypeFlexRayFrame:

fcFlexRayFrame* pFrame = pCurrentPacket->FlexRayFrame;

printf(“[fcPacketTypeFlexRayFrame] Cycle: %d Id: %d Channel:”

“%d PayloadLength: %d”, pFrame->CycleCount,
pFrame->ID,

pFrame->Channel,

pFrame->PayloadLength);

for (int 1 = 0; 1 < pFrame->PayloadLength; i++)

{

}

if
if
if
if
if
if
if
if

if

printf(“%04X *“, pFrame->pDatali]);

(pFrame->PP) printf(*“ PP”);
(pFrame->NF) printf(*“ NF”);
(pFrame->SYNC) printf(*“ SYNC”);
(pFrame->STARTUP) printf(*“ STARTUP”);
(pFrame->SyntaxError) printf(*“ SyntaxError™);
(pFrame->ContentError) printf(*“ ContentError™);
(pFrame->ValidFrame) printf(*“ ValidFrame”);
(pFrame->SlotBoundaryViolation)

printf(“ SlotBoundaryViolation™);
(pFrame->AsyncMode)

printf(“ AsyncMode FrameCRC: Ox%06X”, pFrame->FrameCRC);
printf(“\n”);
break;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 84 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

case fcPacketTypeError:
printf(“[fcPacketTypeError]\n’);
break;

case fcPacketTypeStatus:
printf(“[fcPacketTypeStatus]\n”);
break;

case fcPacketTypeTrigger:
printf(“[fcPacketTypeTrigger]\n™);
break;

case fcPacketTypeTxAcknowledge:
printf(“[fcPacketTypeTxAcknowledge]\n’);
break;

case fcPacketTypeNMVector:

printf(“[fcPacketTypeNMVector]\n”);
break;

}

pCurrentPacket = pCurrentPacket->pNextPacket;
3

fcFreeMemory(fcMemoryTypePacket, pPacket);

4.10 OBSOLETE

4.10.1 FCINFO (OBSOLETE)

Information
Q This structure is obsolete. Please use fcInfoHwSw instead.

This structure provides information about the components and the identifier of a FlexCard. If more than one
FlexCard is detected on the system, the fcbGetEnumFlexCards (Obsolete) function returns a linked list of
this structure. If a connection to a FlexCard is already opened, this FlexCard does not appear in this list.

Typedef struct fclnfo

fcDword FlexCardld;
fcVersion Version;
fclnfo* pNext;

} fcinfo;

Members

FlexCardld
Unique number used to identify a FlexCard. This id is required to open a connection to the
FlexCard.

Version
Version information about hardware and software components of the FlexCard.

pNext
Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer.

See Also
fcVersion (OBSOLETE), fcbGetEnumFlexCards (Obsolete)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 85 of 180

4.10.2 FCINFOV2 (OBSOLETE)

Information
o This structure is obsolete. Please use fcInfoHwSw instead.

This structure provides information about the components, the identifier and the current device state of a
FlexCard. If more than one FlexCard is detected on the system, the fcbGetEnumFlexCardsV2 (Obsolete)
function returns a linked list of this structure.

Typedef struct fclnfoVv2
{

fcDword FlexCardld;
fcVersion Version;
fcDword Busy;
fcDword Reserved;
fcinfoV2* pNext;

} fclinfoVv2;

Members
FlexCardld

Unique number used to identify a FlexCard. This id is required to open a connection to the

FlexCard.
Version
Version information about hardware and software components of the FlexCard.
Busy
The current device state. A value <> 0 indicates a connection to this FlexCard is already

opened.
Reserved
Reserved for future use.
pNext
Pointer to the next available FlexCard. If no other FlexCard exists, pNext is a null pointer.

See Also
fcVersion (OBSOLETE), fcbGetEnumFlexCardsV2 (Obsolete)

4.10.3 FCVERSION (OBSOLETE)

Information
o This structure is obsolete. Please use fcinfoHw and fclnfoSw instead.

This structure provides version information about the FlexCard hardware and software components.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 86 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcVersion

fcVersionNumber BaseDII;
fcVersionNumber DeviceDriver;
fcVersionNumber Firmware;
fcVersionNumber Hardware;
fcCCType CCType;
fcVersionNumber CC;
fcVersionNumber BusGuardian;
fcVersionNumber Protocol;
fcDword Serial;
fcFlexCardDeviceld Deviceld;
fcVersionCC* pVersionCC;
fcDword Reserved[2];
}fcVersion;

Members

BaseDIll1

DLL Base Version
DeviceDriver

Device driver version
Firmware

Firmware (gateway software) version
Hardware

FlexCard hardware version
CCType

Communication controller type
ccC

Communication controller module version
BusGuardian

Bus Guardian version
Protocol

FlexRay Protocol version
Serial
FlexCard serial number. A zero value indicates a non-valid FlexCard serial number.
Deviceld
Device identifier to detect the FlexCard type (FlexCard Cyclone Il, FlexCard Cyclone Il SE or
FlexCard PMC).
pVersionCC
Pointer to version information about the available communication controllers.
Reserved
Reserved for internal purpose

See Also
fcFlexCardDeviceld, fclnfo (Obsolete), fclnfoV2 (Obsolete), fcbGetEnumFlexCards (Obsolete),
fcbGetEnumFlexCardsV2 (Obsolete)

4.10.4 FCBGETENUMFLEXCARDS (OBSOLETE)

Information
Q This function is obsolete. Please use fcbGetEnumFlexCardsV3 instead.

This function returns a linked list of the unused FlexCards found on the system. To free the memory, which
was allocated by the function, please use the function fcFreeMemory with type fcMemoryTypelnfo.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 87 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbGetEnumFlexCards(
fcinfo** plnfo
)

Parameters
pinfo

[OUT] linked list of fcInfo (Obsolete) objects

Return values
If the function succeeds, the return value is 0. If the function fails the content of pInfo is not valid.
The error code NULL_PARAMETER is returned if pInfo parameter is a null pointer. If the memory
allocation fails, the error code MEMORY_ALLOCATION_FAILED is returned.

Remarks
If a connection to a FlexCard is already opened, this FlexCard does not appear in this list. If the
function succeeds, there will always be one valid fcinfo (Obsolete) structure regardless if there is a
FlexCard in the system or not. This functionality is given to provide version information about the DLL
/ library. The version information concerning the hardware is only valid if the identifier (pInfo-
>FlexCardld) is not 0.

Information

This function allocates memory for use. To prevent memory leaks you have to free
it up by calling the function fcFreeMemory with the type fcMemoryTypelnfo.

o From FlexCard API version S2V0-F on it is possible to use four FlexCards in one
PC. With FlexCard API versions up to S2VO0-F it isn’t possible to use two

FlexCards in one PC at the same time. That means that only the first inserted

FlexCard can be used. The second one doesn’t appear in the list of available

FlexCards.
See Also
fcinfo (Obsolete)
4.10.5 FCBGETENUMFLEXCARDSV2 (OBSOLETE)
Information
o This function is obsolete. Please use fcbGetEnumFlexCardsV3 instead.

This function returns a linked list of the installed FlexCards found on the system. To free the memory, which
was allocated by this function, please use the function fcFreeMemory with type fcMemoryTypelnfoVv2.

TfcError fcbGetEnumFlexCardsV2(
fclnfoVv2** plnfoVv2
)

Parameters
pInfov2
[OUT] linked list of fcInfoV2 (Obsolete) objects

Return values
If the function succeeds, the return value is 0. If the function fails the content of pInfoV2 is not valid.
The error code NULL_PARAMETER is returned if pInfoV2 parameter is a null pointer. If the memory
allocation fails, the error code MEMORY_ALLOCATION_FAILED is returned.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 88 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks

If the function succeeds, there will always be one valid fcinfoV2 (Obsolete) structure regardless if
there is a FlexCard in the system or not. This functionality is given to provide version information
about the DLL / library. The version information concerning the hardware is only valid if the identifier
(pInfoV2->FlexCardld) is not O.

Information
O This function allocates memory for use. To prevent memory leaks you have to free
it up by calling the function fcFreeMemory with the type fcMemoryTypelnfoV2.

See Also

fcinfoV2 (Obsolete)

4.10.6 FCBMONITORINGSTART (OBSOLETE)

Information
O This function is obsolete. Please use fcbFRMonitoringStart instead.

This function is used to start the monitoring of a FlexRay bus. Once called, the function changes the
communication controller state from configuration state to normal active state (if the cluster integration
succeeds). The current communication controller state can be read using the function fcbGetCcState
(Obsolete). If the FlexCard is synchronized with the cluster the function fcbGetCcState (Obsolete) will
return the value fcStateNormalActive.

fcError fcbMonitoringStart(

fcHandle hFlexCard,
fcMonitoringModes mode,
bool restartTimestamps,
bool enableCycleStartEvents
bool enableColdstart,

bool enableWakeup

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
Mode

[IN] The monitoring mode. Not every monitoring mode is supported by all communication

controllers. See fcMonitoringModes for details.
restartTimestamps

[IN] Set this parameter to false to restart the measurement without resetting the FlexCard
timestamp. Set it to true to start the measurement from the beginning. The timestamps have
micro second resolution.

enableCycleStartEvents
[IN] Set this parameter to true to enable the cycle start events in order that at the beginning of
every cycle the event fcNotificationTypeCycleStarted is signalled.

enableColdstart
[IN] Set this parameter to true to allow the FlexCard to initialize the cluster communication,
otherwise the coldstart inhibit mode is active. This feature can not be used in the monitoring
modes fcMonitoringDebug and fcMonitoringDebugAsynchron.

enableWakeup
[IN] Set this parameter to true to transmit a wakeup pattern on the configured wakeup channel
(FlexRay Protocol Specification: pWakeupChannel). A cluster wakeup must precede the
communication start up to ensure that all nodes in a cluster are awake. The minimum

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 89 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

requirement for a cluster wakeup is that all bus drivers are supplied with power. This feature
can not be used in the monitoring modes fcMonitoringDebug and
fcMonitoringDebugAsynchron.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
After the monitoring has started, the user should check if the integration in the cluster was
successful: fcbGetCcState (Obsolete) should return the state fcStateNormalActive.

Information
0 After the monitoring has successfully started, the receive process has to be

started as soon as possible to avoid an overflow (error packet
fcErrFlexcardOverflow is received). Once an overflow occurred, no more packets
can be received. The monitoring has to be stopped and started again.

See Also
fcbMonitoringStop (Obsolete), fcbGetCcState (Obsolete), fcMonitoringModes, fcbSetEventHandle

(Obsolete)

4.10.7 FCBMONITORINGSTOP (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRMonitoringStop instead.

This function stops the FlexRay bus measurement. The communication controller is set back in its
configuration state.

fcError fcbMonitoringStop(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to FlexCard

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbMonitoringStart (Obsolete)

4.10.8 FCBGETCCSTATE (OBSOLETE)

Information

0 This function is obsolete. Please use fcbFRGetCCState instead.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 90 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

This function returns the current communication controller POC state. For a description of possible states,
refer to the enumeration fcState. This function should be used to check if the integration into a FlexRay
cluster has succeeded.

TfcError fcbGetCcState(
fcHandle hFlexCard,
fcState* pState

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
pState

[OUT] Current communication controller state

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See
fcbMonitoringStart (Obsolete), fcoMonitoringStop (Obsolete)

4.10.9 FCBSETTRANSCEIVERSTATE (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRSetTransceiverState instead.

This function sets the transceiver mode individually for each channel.

fcError fcbSetTransceiverState (
fcHandle hFlexCard,
fcTransceiverState stateChannelA,
fcTransceiverState stateChannelB

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
stateChannelA
[IN] The new transceiver state for channel A
stateChannelB

[IN] The new transceiver state for channel B

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
If one of the transceivers is in the sleep mode and the transceiver detects a wakeup event, the
notification event FcNotificationTypeWakeup is fired once only.

See
fcTransceiverState, fcbMonitoringStart (Obsolete), fcbGetTransceiverState (Obsolete)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 91 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.10.10 FCBGETTRANSCEIVERSTATE (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRGetTransceiverState instead.

This function gets the transceiver state individually for each channel.

fcError fcbGetTransceiverState (
fcHandle hFlexCard,
fcTransceiverState* stateChannelA,
fcTransceiverState* stateChannelB

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
stateChannelA
[OUT] The current transceiver state for channel A
stateChannelB

[OUT] The current transceiver state for channel B

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
If one of the transceiver is in the sleep mode and the transceiver detects a wakeup event, the
notification event fcNotificationTypeWakeup is fired once only.

See
fcTransceiverState, fcbMonitoringStart (Obsolete), fcbSetTransceiverState (Obsolete)

4.10.11 FCBSETEVENTHANDLE (OBSOLETE)

Information

This function is obsolete. Please use fcbSetEventHandleV2 or
fcbSetEventHandleSemaphore instead.

This function registers an event handle for a specific notification type.

fcError fcbSetEventHandle(
fcHandle hFlexCard,
fcHandle hEvent,
fcNotificationType type

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
hEvent

[IN] Event handle to be registered to signal when a new cycle starts or a timer interval has
elapsed depending on the given type.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 92 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Type
[IN] The notification type for which the event has to be registered.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType

4.10.12 FCBTRANSMIT (OBSOLETE)

Information
O This function is obsolete. Please use fcbFRTransmit instead.

This function writes a data frame into a communication controller transmit buffer of the FlexCard. The frame
should normally be transmitted in the next cycle. If the transmit acknowledgment is activated, an
acknowledge packet is generated as soon as the frame has been transmitted. This function should only be
called when the FlexCard is in normal active state or when all message buffer configurations have been
done.

fcError fcbTransmit(
fcHandle hFlexCard,
fcDword bufferlid,
fcWord payload[],
fcByte payloadlLength

)

Parameters
hFlexCard

[IN] Handle to a FlexCard
bufferid

[IN] The id of the message buffer used for the transmission
payload

The payload data to be transmitted
payloadLength

The size of the payload data (number of 2-byte words)

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.
The transmission may fail, if the buffer is currently in use (fcGetErrorCode returns
MSG_BUFFER_BUSY). In that case retry later.

Remarks
The payload data has to be organized as follows: if DataO is the first byte to transmit and Data1 the
second byte to transmit, then the high byte (Bit 8 — 15) of payload[0] contains Data1, the low byte
(Bit0-7) of payload[0] contains Data0, etc.

Parameter payload payload[0] (Word 0) payload[1] (Word 1)
High byte Low byte High byte Low byte
FlexRay payload segment Data 1 Data 0 Data 3 Data 2

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 93 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.10.13 FCBTRANSMITSYMBOL (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRTransmitSymbol instead.

This function transmits a symbol in the symbol window segment. It can only be called if the communication
controller is in the POC state NORMAL_ACTIVE. For a list of available symbols to be transmitted, see the
enumeration fcSymbolType.

fcError fcbTransmitSymbol (
fcHandle hFlexCard,
fcSymbolType symbol

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
symbol

[IN] Type of symbol to transmit
Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

4.10.14 FCBSETCCREGISTER (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRSetCcRegister instead.

This function writes a value in a given register of the communication controller. Not every register can be
written (e.g. the registers belonging to the message buffer configuration or some interrupt settings).

fcError fcbSetCcRegister(
fcHandle hFlexCard,
fcDword address,
fcDword value

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
address
[IN] Address of the CC register to be written
value

[IN] The value to be written

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information. If the register can not be written the error
code REGISTER_NOT_WRITEABLE is returned.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 94 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks
For a register description, refer to the specification of the corresponding communication controller.
Modifying one of the following registers will reset message buffers with their default settings (FIFO
receive buffers). The user's message buffers configuration will not be valid anymore.
Bosch E-Ray: MHDC (0x0098) and GTUC7 (0x00B8)

Information
0 Not all register of a communication controller can be set. The base API will modify

some parameters so that the operating of the FlexCard is guaranteed (e.qg.
interrupt settings). Access is denied to all registers which are used for message
buffer configuration.

See Also
fcbGetCcRegister (Obsolete)

4.10.15 FCBGETCCREGISTER (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRGetCcRegister instead.

This function reads and returns the content of a given register of the communication controller.

TfcError fcbGetCcRegister(
fcHandle hFlexCard,
fcDword address,
fcDword* pValue

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
address
[IN] Address of the CC register to be read.
pValue

[OUT] The content of the desired CC register.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information. If the register cannot be read the error code
REGISTER_NOT_READABLE is returned.

Remarks
Not every register can be read. For a register description, refer to the specification of the
corresponding communication controller.

See Also
fcbSetCcRegister (Obsolete)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 95 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.10.16 FCBCHICCCONFIGURATION (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRSetCcConfigurationChi instead.

This function configures the communication controller of the FlexCard with a FlexConfig compatible
configuration string (CHI File). The configuration string contains the global FlexRay parameter and/or the
message buffer configuration. The payload data for transmit message buffers are not set by this function.
Before the configuration of the communication controller starts, all message buffers are reset to their
default settings (FIFO buffer).

TfcError fcbChiCcConfiguration(
fcHandle hFlexCard,
const char* szChi

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
szChi

[IN] Pointer to null-terminated CHI content string (refer to the CHI string example section).
Please note: Do not use the CHI file name here, but the content of the CHI file as parameter
value.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Information
o Internally, the function uses the function fcbSetCcRegister (Obsolete); therefore

the same restrictions as for writing registers exist.

See Also
fcbSetCcRegister (Obsolete)

4.10.17 FCcBCANDBCCCONFIGURATION (OBSOLETE)

Information

0 This function is obsolete. Please use fcbFRSetCcConfigurationCANdb instead.

This function configures the communication controller of the FlexCard with a CANdb compatible string. The
configuration string contains the global FlexRay parameter and/or the message buffer configuration. Before
the configuration of the communication controller starts, all message buffers are reset to their default
settings (FIFO buffer).

fcError fcbCanDbCcConfiguration(
fcHandle hFlexCard,
const char* szCanDb

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 96 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Parameters
hFlexCard

[IN] Handle to a FlexCard
szCanDb

[IN] Pointer to null-terminated CANdb string

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
This function is only available in the Windows FlexCard driver. The FlexCard Linux and Xenomai
drivers don’t support this function.

Information
O Internally, the function uses the fcbSetCcRegister (Obsolete) function; therefore

the same restrictions as for writing a register exist.

4.10.18 FCBCONFIGUREMESSAGEBUFFER (OBSOLETE)

Information
O This function is obsolete. Please use fcbFRConfigureMessageBuffer instead.

This function configures transmit, receive and FIFO message buffers of the communication controller.
Configuring message buffers is only allowed if the communication controller is in its configuration state,
fcStateConfig.

fcError fcbConfigureMessageBuffer(
fcHandle hFlexCard,
fcDword* bufferid,
fcMsgBufCfg cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
bufferld

[OUT] Message buffer identifier. If the configuration was successful the message buffer
identifier is greater than 0. This identifier will be required to transmit the content of the buffer (in
the case of a transmit buffer).

Cfg
[IN] Message buffer configuration parameters

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
Before configuring the message buffers, it is necessary to set up the global communication
parameters (cluster parameters). Internally the FlexCard uses the FIFO buffers as receive buffers,
therefore we recommend using FIFO message buffers as much as possible.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 97 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo

4.10.19 FCBRECONFIGUREMESSAGEBUFFER (OBSOLETE)

Information
0 This function is obsolete. Please use fcbFRReconfigureMessageBuffer instead.

This function reconfigures transmit, receive and FIFO message buffers of the communication controller. A
reconfiguration is only allowed for message buffers which are already configured. This function is available
in all states of the CC. Not all configuration settings can be modified in monitoring state. Refer to the
documentation of the message buffer structures for further details.

fcError fcbReconfigureMessageBuffer(
fcHandle hFlexCard,
fcDword bufferld,
fcMsgBufCfg cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
bufferld

[IN] The identifier of the message buffer which should be reconfigured.
Cfg
[IN] Message buffer configuration parameters.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, fcboConfigureMessageBuffer
(Obsolete), fcbGetCcMessageBuffer (Obsolete)

4.10.20 FCBGETCCMESSAGEBUFFER (OBSOLETE)

Information

0 This function is obsolete. Please use fcbFRGetMessageBuffer instead.

This function reads a specific message buffer configuration.

fcError fcbGetCcMessageBuffer(
fcHandle hFlexCard,
fcDword bufferlid,
fcMsgBufCfg* cfg

))

Parameters
hFlexCard

[IN] Handle to a FlexCard

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 98 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

bufferld
[IN] The identifier of the message buffer to be read
cfg
[OUT] The configuration parameters of the specified message buffer.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
The buffer with id 1 is always a FIFO message buffer.

See Also
fcMsgBufCfg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo, fcbConfigureMessageBuffer

(Obsolete)

4.10.21 FCBRESETCCMESSAGEBUFFER (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRResetMessageBuffers instead.

This function resets the communication controller message buffers. After calling this function, all message
buffers are configured as receive FIFO — with maximal payload (depends on the communication controller).

fcError fcbResetCcMessageBuffer(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to a FlexCard
Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

4.10.22 FCBFILTER (OBSOLETE)

Information

This function is obsolete. Please use fcbFRSetSoftwareAcceptanceFilter or
fcoFRSetHardwareAcceptancerFilter instead.

This function configures the frame ids accepted by the device driver. Only the ids which are in the filter list
are forwarded to the user application, all other frames are rejected. To accept all frames set the parameters
pData to NULL and nSize to zero or configure a single frame id of zero.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 99 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbFilter(
fcHandle hFlexCard,
fcChannel channel,
fcDword* pData,
fcDword size

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
channel
[IN] FlexCard channel(s) concerned by the filter
pData

[IN] Pointer to a fcDword array containing the ids accepted by the device driver. Each element
(fcDword) contains one frame identifier.
fcDword fcDword

ID x IDy

size
[IN] Number of ids in the array

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

4.10.23 FCBSETCCTIMERCONFIG (OBSOLETE)

Information
O This function is obsolete. Please use fcbFRSetCcTimerConfig instead.

This function configures the communication controller timer interrupt. To get a notification when the
communication controller timer interval elapsed, an event of type fcNotificationTypeCcTimer has to
be registered by the function fcbSetEventHandle (Obsolete). Additionally the communication controller
timer can be enabled / disabled by this function.

fcError fcbSetCcTimerConfig(
fcHandle hFlexCard,
fcCcTimerCfg cfg,
bool bEnable

))

Parameters
hFlexCard
[IN] Handle to a FlexCard.
Cfg
[IN] The communication controller timer configuration.
bEnable
[IN] Set to true to enable the cc timer, and to false to disable it.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbSetEventHandle (Obsolete), fcCcTimerCfg, fcbGetCcTimerConfig (Obsolete)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 100 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

4.10.24 FCBGETCCTIMERCONFIG (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRGetCcTimerConfig instead.

This function reads the communication controller timer configuration.

TfcError fcbGetCcTimerConfig(

)

fcHandle hFlexCard,
fcCcTimerCfg* pCfg

Parameters

hFlexCard
[IN] Handle to a FlexCard.

pCfg

[OUT] The configuration parameters of the cc timer.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

See Also

fcCcTimerCfg, fcbSetCcTimerConfig (Obsolete)

4.10.25 FCBCALCULATEMACROTICKOFFSET (OBSOLETE)

Information
o This function is obsolete. Please use fcbFRCalculateMacrotickOffset instead.

This function calculates the macrotick offset for a specific cycle position in a FlexRay cycle.

fcError fcbCalculateMacrotickOffset(

fcHandle hFlexCard,
fcCyclePos CyclePosition,
fcDword SlotOrMiniSlotld,
fcDword* pValue

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
CyclePosition
[IN] The cycle position of type fcCyclePos.
SlotOrMiniSlotld

[IN] This parameter is used for a cycle position of fcCyclePosStaticSlot and
fcCyclePosDynamicMiniSlot to calculate the macrotick offset for a static slot or a dynamic

mini slot id.
pvalue
[OUT] The macrotick offset value.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 101 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCyclePos, fcCcTimerCfg, fcbSetCcTimerConfig (Obsolete)

4.10.26 TRIGGER CONFIGURATION (OBSOLETE)

Information
o This configuration is obsolete. Please see Trigger configuration instead.

If the FlexCard is equipped with a trigger interface, the FlexCard has the ability to receive trigger events
and forward them to the user application. This feature allows e.g. a synchronization of different bus
analyzer. To configure and activate this feature, use the following structures and functions. The trigger
event data is received as fcTriggerIinfoPacket (Obsolete) with the fcbReceive function.

fcTriggerModeActive

fcTriggerModePassive

fcTriggerTypeHardware] o :
fcTriggerConditionFallingEdge

fcTriggerTypeSoftware) n o
fcTriggerConditionRisingEdge
fcTriggerConditionCycleStart

fcTriggerConditionUser

Mode
fcTriggerConditionStartupCompleted
] Condition
fcTriggerType Type fcTriggerConditionError

fcTriggerCfgHardware Hardware

fcTriggerCfgSoftware Software

Mode

TimePeriod

Figure 10: Overview fcbTriggerCfg structure

4.10.27 TYPEDEFINITIONS (OBSOLETE)

4.10.27 1 FCTRIGGERCFGHARDWARE (OBSOLETE)

This structure configures the hardware trigger. In the passive mode, the FlexCard waits for trigger events
on its input line and generates a fcTriggerinfoPacket (Obsolete) object each time a trigger event is
received. In this mode, the parameter Condition specifies on which condition the input signal will be
recognized as a trigger event. In the active mode, the FlexCard generates a pulse on its output line when a

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 102 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

trigger event is signalled. In this mode, the parameter Condition specifies on which condition a pulse will
be generated by the FlexCard. For information about the pin assignment of the input and output line, refer
to the user manual of the FlexCard.

Typedef struct fcTriggerCfgHardware
{

fcTriggerMode Mode;
fcTriggerCondition Condition;
}fcTriggerCfgHardware;

Members
Mode
Set the trigger mode (active or passive mode). The hardware trigger does not support the timer
mode.
fcTriggerCondition
Depending on the mode, the following conditions can be used:
e Passive mode:
- Falling edge (Trigger packet is generated on falling edge of the input signal)
- Rising edge (Trigger packet is generated on rising edge of the input signal)
e Active mode:
- Cycle start (A pulse is generated on the output line when a new cycle starts)
- User (A pulse is generated on the output line when the user is calling the
function fcbTrigger)
- Error (A pulse is generated on the output line when an error occurred)
- Start up completed (A pulse is generated on the output line when the start up
was completed)
See Also

fcTriggerCfg (Obsolete), fcTriggerCondition (Obsolete), fcTriggerMode (Obsolete)

4.10.27.2 FCTRIGGERCFGSOFTWARE (OBSOLETE)

This structure configures the software trigger. In active mode an fcTriggerinfoPacket (Obsolete) object is
generated each time the function fcbTrigger (Obsolete) is called. In the timer mode an fcTriggerinfoPacket
(Obsolete) object is generated every TimePeriod millisecond. A zero TimePeriod means that no
fcTriggerinfoPacket (Obsolete) will be generated.

Typedef struct fcTriggerCfgSoftware
{

fcTriggerMode Mode;
fcDword TimePeriod;
}fcTriggerCfgSoftware;

Members
Mode

Set the trigger mode (active or timer mode). The software trigger does not support the passive
mode.

TimePeriod
This parameter is only used in timer mode. Every TimePeriod milliseconds (range: 0 —
400000) a trigger packet will be generated.

See Also
fcTriggerCfg (Obsolete), fcTriggerMode (Obsolete)

4.10.27.3 FCTRIGGERCFG (OBSOLETE)

This structure is used for the configuration of a trigger. Only one trigger at a time (hardware or software)
can be used and the conditions cannot be combined.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 103 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcTriggerCfg
{

fcTriggerType Type;
union

fcTriggerCfgHardware Hardware;
fcTriggerCfgSoftware Software;

}:
}fcTriggerCfg;

Members
Type
Type of trigger (hardware or software)
Hardware

Configuration of hardware trigger
Software

Configuration of software trigger

See Also
fcTriggerType (Obsolete), fcTriggerCfgHardware (Obsolete), fcTriggerCfgSoftware (Obsolete),
fcbTrigger (Obsolete)

4.10.27.4 FCTRIGGERINFOPACKET (OBSOLETE)
This structure provides information about a trigger packet.

Typedef struct fcTriggerlnfoPacket

fcTriggerType Type;
fcTriggerCondition Condition;
fcDword TimeStamp;

fcDword SequenceCount;
fcQuad PerformanceCounter;

}fcTriggerinfoPacket;

Members
Type
Type of trigger info packet
Condition
The fulfilled condition which has caused the trigger packet generation
TimeStamp
The FlexCard time stamp (1 ps resolution). Indicates the time at which the packet was

generated.
SequenceCount
Sequence count for each signal
PerformanceCounter
Variable that receives the current performance-counter value. This value is only valid for
software triggers (FcTriggerTypeSoftware).

See Also
fcPacket

4.10.28 ENUMERATIONS (OBSOLETE)

4.10.28.1 FCTRIGGERCONDITION (OBSOLETE)
This enumeration defines the conditions available for a trigger configuration.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 104 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef enum fcTriggerCondition

fcTriggerConditionFallingEdge =1,
fcTriggerConditionRisingEdge = 2,
fcTriggerConditionCycleStart = 3,
fcTriggerConditionUser =4,
fcTriggerConditionErrorDetected =5,
fcTriggerConditionStartupCompleted = 6,
fcTriggerConditionTimer =7,

}fcTriggerEdge;

Members

fcTriggerConditionFallingEdge

Passive mode condition: input trigger is detected on falling edge
fcTriggerConditionRisingEdge

Passive mode condition: input trigger is detected on rising edge
fcTriggerConditionCycleStart

Active mode condition: output trigger is set on start of a new FlexRay cycle
fcTriggerConditionUser

Active mode condition: output trigger is set by the user
fcTriggerConditionErrorDetected

Active mode condition: output trigger is set if an error was detected
fcTriggerConditionStartupCompleted

Active mode condition: output trigger is set when the start-up was completed
fcTriggerConditionTimer

Timer mode condition: Internal trigger is set by the software timer (neither input nor output

trigger signal is used)

See Also
fcTriggerCfgHardware (Obsolete)

4.10.28.2 FCTRIGGERTYPE (OBSOLETE)
This enumeration defines the different trigger types.

Typedef enum fcTriggerType
fcTriggerTypeHardware

fcTriggerTypeSoftware
} fcTriggerType;

1 n
N

Members
fcTriggerTypeHardware

Hardware trigger
fcTriggerTypeSoftware

Software trigger

See Also
fcTriggerCfg (Obsolete)

4.10.28.3 FCTRIGGERMODE (OBSOLETE)
This enumeration defines the different trigger modes.

Typedef enum fcTriggerMode

fcTriggerModeActive

fcTriggerModePassive

fcTriggerModeTimer
}fcTriggerMode;

1
WN P

Members
fcTriggerModeActive

Active mode: triggered by FlexCard or by user

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 105 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcTriggerModePassive

Passive mode: triggered by external hardware
fcTriggerModeTimer

Timer mode: triggered by software timer.

See Also
fcTriggerCfgHardware (Obsolete), fcTriggerCfgSoftware (Obsolete)

4.10.29 FCBTRIGGER (OBSOLETE)

This function configures and starts/stops a trigger. For further information, refer to the structures
fcTriggerCfgSoftware and fcTriggerCfgHardware.

fcError fcbTrigger(
fcHandle hFlexCard,
bool enable,
fcTriggerCfg cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
enable

[IN] Set to true to enable the trigger, and to false to disable it.
Cfg
[IN] The trigger configuration

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcTriggerCfg (Obsolete)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 106 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

5

5.1

51.1

ADDITIONAL FLEXRAY API

Information

All enumerations, structures and function in this chapter are initially supported by
FlexCard API version S4V2-F.

INITIALIZATION

FCBFRMONITORINGSTART

This function is used to start the monitoring of a FlexRay bus. Once called, the function changes the
communication controller state from configuration state to normal active state (if the cluster integration
succeeds). The current communication controller state can be read using the function fcbFRGetCCState. If
the FlexCard is synchronized with the cluster the function fcbFRGetCCState will return the value
fcStateNormalActive.

fcError fcbFRMonitoringStart(

D)

fcHandle hFlexCard,

fcCC CC,

fcMonitoringModes mode,
bool restartTimestamps,
bool enableCycleStartEvents
bool enableColdstart,

bool enableWakeup

Parameters

hFlexCard

[IN] Handle to a FlexCard.

cC
[IN] Communication controller index

mode
[IN] The monitoring mode. Not every monitoring mode is supported by all communication
controllers. See fcMonitoringModes for details.

restartTimestamps
[IN] Set this parameter to false to restart the measurement without resetting the FlexCard
timestamp. Set it to true to start the measurement from the beginning. The timestamps have
micro second resolution.

enableCycleStartEvents
[IN] Set this parameter to true to enable the cycle start events in order that at the beginning of
every cycle the event fcNotificationTypeFRCycleStarted is signalled.

enableColdstart
[IN] Set this parameter to true to allow the FlexCard to initialize the cluster communication,
otherwise the coldstart inhibit mode is active. This feature can not be used in the monitoring
modes fcMonitoringDebug and fcMonitoringDebugAsynchron.

enableWakeup
[IN] Set this parameter to true to transmit a wakeup pattern on the configured wakeup channel
(FlexRay Protocol Specification: pWakeupChannel). A cluster wakeup must precede the
communication start up to ensure that all nodes in a cluster are awake. The minimum
requirement for a cluster wakeup is that all bus drivers are supplied with power. This feature

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 107 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

can

be used in the monitoring modes fcMonitoringDebug and

fcMonitoringDebugAsynchron.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks

After the monitoring has started, the user should check if the integration in the cluster was
successful: fcbFRGetCCState should return the state fcStateNormalActive.

i

Information

After the monitoring has successfully started, the receive process has to be
started as soon as possible to avoid an overflow (error packet
fcErrFlexcardOverflow is received). Once an overflow occurred, no more packets
can be received. The monitoring has to be stopped and started again.

See Also

fcCC, fcbFRMonitoringStop, fcbFRGetCCState, fcMonitoringModes, fcbSetEventHandleV2,

fcbSetEventHandleSemaphore

Example
// Precondition:

valid flexcard handle exists and the flexcard is

// already configured.

fcCC eCC = fcCC1l;

fcError e = fcbFRMonitoringStart(hFlexCard,eCC,fcMonitoringNormal,true,

if (0 == e)
{

false,false,false);

bool synchronized = false;

bool timeout
DWORD maxTime

Tfalse;
= ::GetTickCount() + 2000;

fcState currentState = fcStateUnknown;

// Check if the FlexCard is synchronized

do
fcbFRGetCcState(hFlexCard, eCC, ¤tState);
synchronized = (currentState == fcStateNormalActive);
timeout = ::GetTickCount() >= maxTime;

} while (! synchronized && ! timeout);

if (synchronized)

// Start your receive thread/routine

//
}
else
{ _] .
// if we timed out, we stop the monitoring
fcbFRMonitoringStop(hFlexCard,eCC);
}
}
else
{)
// error handling ..
}
5.1.2 FCBFRMONITORINGSTOP

This function stops the FlexRay bus measurement. The communication controller is set back in its

configuration state.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 108 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbFRMonitoringStop(
fcHandle hFlexCard,

fcCC CC
)
Parameters
hFlexCard

[IN] Handle to FlexCard
cC

[IN] Communication controller index

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcbFRMonitoringStart

5.1.3 FCBFRGETCCSTATE

This function returns the current communication controller POC state. For a description of possible states,
refer to the enumeration fcState. This function should be used to check if the integration into a FlexRay
cluster has succeeded.

fcError fcbFRGetCcState(
fcHandle hFlexCard,
fcCC CC,
fcState* pState

))

Parameters
hFlexCard

[IN] Handle to a FlexCard
cC

[IN] Communication controller index
pState

[OUT] Current communication controller state

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See
fcCC, fcState, fcbFRMonitoringStart, fcoFRMonitoringStop

Example
See example fcbFRMonitoringStart

514 FCBFRSETTRANSCEIVERSTATE

This function sets the transceiver mode individually for each channel.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 109 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbFRSetTransceiverState (
fcHandle hFlexCard,
fcCC CC,
fcTransceiverState stateChA,
fcTransceiverState stateChB

)

Parameters
hFlexCard

[IN] Handle to a FlexCard
cC

[IN] Communication controller index
stateChA

[IN] The new transceiver state for channel A
stateChB

[IN] The new transceiver state for channel B

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
If one of the transceivers is in the sleep mode and the transceiver detects a wakeup event, the
notification event FcNotificationTypeFRWakeup is fired once only.

See
fcCC, fcTransceiverState, fcbFRMonitoringStart, fcoFRGetTransceiverState

5.1.5 FCBFRGETTRANSCEIVERSTATE

This function gets the transceiver state of a selected communication controller individually for each
channel.

fcError fcbFRGetTransceiverState (
fcHandle hFlexCard,
fcCC CC,
fcTransceiverState* pStateChA,
fcTransceiverState* pStateChB

))

Parameters
hFlexCard

[IN] Handle to a FlexCard
cC

[IN] Communication controller index
pStateChA

[OUT] The current transceiver state for channel A
pStateChB
[OUT] The current transceiver state for channel B

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
If one of the transceiver is in the sleep mode and the transceiver detects a wakeup event, the
notification event fcNotificationTypeFRWakeup is fired once only.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 110 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See

fcCC, fcTransceiverState, fcbFRMonitoringStart, fcoFRSetTransceiverState

52 CONFIGURATION

5.2.1 ENUMERATIONS

5.2.1.1 FCFRBAUDRATE

This enumeration defines the various baud rates on the FlexRay bus.

Typedef enum fcFRBaudRate

fcFRBaudRateNone = O,
fcFRBaudRate2M5,
fcFRBaudRate5M,
fcFRBaudRatelOM,

} fcFRBaudRate;

Members
fcFRBaudRateNone

No baud rate defined
fcFRBaudRate2M5

Defines the baud rate 2.5 Mbit/s
fcFRBaudRate5M

Defines the baud rate 5 Mbit/s
fcFRBaudRatelOM

Defines the baud rate 10 Mbit/s

See Also
fcFRCcConfig

5.2.2 STRUCTURES

5.2.21 FCFRCCCONFIG

This structure describes the configuration of the FlexRay communication controller.

Typedef struct fcFRCcConfig
{

fcFRBaudRate BaudRate;

fcDword gdActionPointOffset;

fcDword gdCASRxLowMax ;

fcDword gdDynamicSlotldlePhase;

fcDword gdMinislot;

fcDword gdMinislotActionPointOffset;
fcDword gdNIT;

fcDword gdStaticSlot;

fcDword gdTSSTransmitter;

fcDword gdWakeupSymbolRxldle;

fcDword gdWakeupSymbolRxLow;

fcDword gdWakeupSymbolRxWindow;

fcDword gdWakeupSymbolTxldle;

fcDword gdWakeupSymbolTxLow;

fcDword gColdStartAttempts;

fcDword gListenNoise;

fcDword gMacroPerCycle;

fcDword gMaxWithoutClockCorrectionFatal;
fcDword gMaxWithoutClockCorrectionPassive;
fcDword gNetworkManagementVectorlLength;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 111 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcDword gNumberOfMinislots;
fcDword gNumberOfStaticSlots;
fcDword gOffsetCorrectionStart;
fcDword gPayloadLengthStatic;
fcDword gSyncNodeMax;

fcDword pdAcceptedStartupRange;
fcDword pdListenTimeout;
fcDword pdMaxDrift;

fcDword pAllowHaltDueToClock;
fcDword pAllowPassiveToActive;
fcChannel pChannelsMTS;
fcChannel pChannels;

fcDword pClusterDriftDamping;
fcDword pDecodingCorrection;
fcDword pDelayCompensationA;
fcDword pDelayCompensationB;
fcDword pExternOffsetCorrection;
fcDword pExternRateCorrection;
fcDword pKeySlotUsedForStartup; //NOT USED.
fcDword pKeySlotUsedForSync; //NOT USED.
fcDword pLatestTx;

fcDword pMacrolnitialOffsetA;
fcDword pMacrolnitialOffsetB;
fcDword pMicrolnitialOffsetA;
fcDword pMicrolnitialOffsetB;
fcDword pMicroPerCycle;

fcDword pOffsetCorrectionOut;
fcDword pRateCorrectionOut;
fcDword pSingleSlotEnabled;
fcChannel pWakeupChannel;
fcDword pWakeupPattern;

fcDword vExternOffsetControl;
fcDword vExternRateControl;

fcDword Reserved[16];

} fcFRCcConfig;

Members

BaudRate
Configures the baud rate on the FlexRay bus.

gdActionPointOffset
Configures the action point offset in macroticks within static slots and symbol window. Must be
identical in all nodes of a cluster. Valid values are 1 to 63 MT.

gdCASRxLowMax
Configures the upper limit of the acceptance window for a collision avoidance symbol (CAS).
Valid values are 67 to 99 bit times.

gdDynamicSlotldlePhase
The duration of the dynamic slot idle phase has to be greater or equal than the idle detection
time. Must be identical in all nodes of a cluster. Valid values are 0 to 2 Minislot.

gdMinislot
Configures the duration of a minislot in macroticks. The minislot length must be identical in all
nodes of a cluster. Valid values are 2 to 63 MT.

gdMinislotActionPointOffset
Configures the action point offset in macroticks within the minislots of the dynamic segment.
Must be identical in all nodes of a cluster. Valid values are 1 to 31 MT.

gdNIT
Configures the starting point of the Network Idle Time NIT at the end of the communication
cycle expressed in terms of macroticks from the beginning of the cycle. The start of NIT is
recognized if Macrotick = gMacroPerCycle — gdNIT -1 and the increment pulse of Macrotick is
set. Must be identical in all nodes of a cluster. Valid values of “gMacroPerCycle — gdNIT -1” are
7 to 15997 MT. Therefore valid values for the parameter gdNIT are 2 to 805 MT.

gdStaticSlot
Configures the duration of a static slot in macroticks. The static slot length must be identical in
all nodes of a cluster. Valid values are 4 to 659 MT.

gdTSSTransmitter

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 112 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Configures the duration of the Transmission Start Sequence (TSS) in terms of bit times (1 bit
time =4 puT = 100ns@10Mbps). Must be identical in all nodes of a cluster. Valid values are 3 to
15 bit times.
gdWakeupSymbolIRxIdle
Configures the number of bit times used by the node to test the duration of the idle phase of
the received wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 14 to
59 bit times.
gdWakeupSymbo IRxLow
Configures the number of bit times used by the node to test the duration of the low phase of the
received wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 10 to 55
bit times.
gdWakeupSymbo IRxWindow
Configures the number of bit times used by the node to test the duration of the received
wakeup pattern. Must be identical in all nodes of a cluster. Valid values are 76 to 301 bit times.
gdWakeupSymbolTxIdle
Configures the number of bit times used by the node to transmit the idle phase of the wakeup
symbol. Must be identical in all nodes of a cluster. Valid values are 45 to 180 bit times.
gdWakeupSymbo I TxLow
Configures the number of bit times used by the node to transmit the low phase of the
wakeup symbol. Must be identical in all nodes of a cluster. Valid values are 15 to 60 bit times.
gColdStartAttempts
Configures the maximum number of attempts that a cold starting node is permitted to try to
start up the network without receiving any valid response from another node. It can be modified
in DEFAULT_CONFIG or CONFIG state only. Must be identical in all nodes of a cluster. Valid
values are 2 to 31.
gListenNoise
Configures the upper limit for startup and wakeup listen timeout in the presence of noise
expressed as a multiple of pdListenTimeout. The range for gListenNoise is 2 to 16.
gMacroPerCycle
Configures the duration of one communication cycle in macroticks. The cycle length must be
identical in all nodes of a cluster. Valid values are 10 to 16000 MT.
gMaxWithoutClockCorrectionFatal
Defines the number of consecutive even/odd cycle pairs with missing clock correction terms
that will cause a transition from NORMAL_ACTIVE or NORMAL_PASSIVE to HALT state. Must
be identical in all nodes of a cluster. Valid values are 1 to 15 cycle pairs.
gMaxWithoutClockCorrectionPassive
Defines the number of consecutive even/odd cycle pairs with missing clock correction terms
that will cause a transition from NORMAL_ACTIVE to NORMAL_PASSIVE state. Must be
identical in all nodes of a cluster. Valid values are 1 to 15 cycle pairs.
gNetworkManagementVectorLength
Configures the length of the NM vector. The configured length must be identical in all nodes of
a cluster. Valid values are 0 to 12 bytes.
gNumberOfMinislots
Configures the number of minislots within the dynamic segment of a cycle. The number of
minislots must be identical in all nodes of a cluster. Valid values are 0 to 7986.
gNumberOfStaticSlots
Configures the number of static slots in a cycle. At least 2 coldstart nodes must be configured
to startup a FlexRay network. The number of static slots must be identical in all nodes of a
cluster. Valid values are 2 to 1023.
gOffsetCorrectionStart
Determines the start of the offset correction within the NIT phase, calculated from start of cycle.
Must be identical in all nodes of a cluster. Valid values are 9 to 15999 MT.
gPayloadLengthStatic
Configures the cluster-wide payload length for all frames sent in the static segment in double
bytes. The payload length must be identical in all nodes of a cluster. Valid values are 0 to 127.
gSyncNodeMax

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 113 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Maximum number of frames within a cluster with sync frame indicator bit SYN set to '1’. Must
be identical in all nodes of a cluster. Valid values are 2 to 15.

pdAcceptedStartupRange
Number of microticks constituting the expanded range of measured deviation for startup frames
during integration. Valid values are 0 to 1875 pT.

pdListenTimeout
Configures wakeup/startup listen timeout in uT. The range for pdListenTimeout is 1284 to
1283846 uT.

pdMaxDrift
Maximum drift offset between two nodes that operate with unsynchronized clocks over one

communication cycle in uT. Valid values are 2 to 1923 uT.

pAllowHaltDueToClock
Controls the transition to HALT state due to a clock synchronization error. Valid values are 0 to
1. If a clock sync error occurred the CC will enter HALT state or enter/remain in
NORMAL_PASSIVE state.

pAllowPassiveToActive
Defines the number of consecutive even/odd cycle pairs that must have valid clock correction
terms before the CC is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state.
If set to zero the CC is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE
state. It can be modified in DEFAULT_CONFIG or CONFIG state only. Valid values are 0 to 31
even/odd cycle pairs.

pChannelsMTS
Selects channels for MTS symbol transmission. The flag is reset by default and may be
modified only in DEFAULT_CONFIG or CONFIG state.

pChannels
Configures which channel the node is connected to.

pClusterDriftDamping
Configures the cluster drift damping value used in clock synchronization to minimize
accumulation of rounding errors. Valid values are 0 to 20 uT.

pDecodingCorrection
Configures the decoding correction value used to determine the primary time reference point.
Valid values are 14 to 143 pT.

pDelayCompensationA
Used to compensate for reception delays on the indicated channel. This covers assumed
propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 0.05us.
In practice, the minimum of the propagation delays of all sync nodes should be applied. Valid
values are 0 to 200 pT.

pDelayCompensationB
Used to compensate for reception delays on the indicated channel. This covers assumed
propagation delay up to cPropagationDelayMax for microticks in the range of 0.0125 to 0.05pus.
In practice, the minimum of the propagation delays of all sync nodes should be applied. Valid
values are 0 to 200 uT.

pExternOffsetCorrection
Holds the external offset correction value in microticks to be applied by the internal clock
synchronization algorithm. The value is subtracted / added from / to the calculated offset
correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or
CONFIG state only. Valid values are 0 to 7 uT.

pExternRateCorrection
Holds the external rate correction value in microticks to be applied by the internal clock
synchronization algorithm. The value is subtracted / added from / to the calculated rate
correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or
CONFIG state only. Valid values are 0 to 7 uT.

pKeySlotUsedForStartup
Defines whether the key slot is used to transmit startup frames. The bit can be modified in
DEFAULT_CONFIG or CONFIG state only.
1 = Key slot used to transmit startup frame, node is leading or following coldstarter
0 = No startup frame transmission in key slot, node is non-coldstarter

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 114 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Not used during configuration. Is set when configuring a message buffer.
pKeySlotUsedForSync
Defines whether the key slot is used to transmit sync frames. The bit can be modified in
DEFAULT_CONFIG or CONFIG state only.
1 = Key slot used to transmit sync frame, node is sync node
0 = No sync frame transmission in key slot, node is neither sync nor coldstart node
Not used during configuration. Is set when configuring a message buffer.
pLatestTx
Configures the maximum minislot value allowed before inhibiting frame transmission in the
dynamic segment of the cycle. There is no transmission in dynamic segment if it is set to zero.
Valid values are 0 to 7981 minislots.
pMacrolnitialOffsetA
Configures the number of macroticks between the static slot boundary and the subsequent
macrotick boundary of the secondary time reference point based on the nominal macrotick
duration. Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT.
pMacrolnitialOffsetB
Configures the number of macroticks between the static slot boundary and the subsequent
macrotick boundary of the secondary time reference point based on the nominal macrotick
duration. Must be identical in all nodes of a cluster. Valid values are 2 to 72 MT.
pMicrolnitialOffsetA
Configures the number of microticks between the actual time reference point on channel A and
the subsequent macrotick boundary of the secondary time reference point. The parameter
depends on pDelayCompensationA and therefore has to be set for each channel
independently. Valid values are 0 to 240 uT.
pMicrolnitialOffsetB
Configures the number of microticks between the actual time reference point on channel B and
the subsequent macrotick boundary of the secondary time reference point. The parameter
depends on pDelayCompensationB and therefore has to be set for each channel
independently. Valid values are 0 to 240 puT.
pMicroPerCycle
Configures the duration of the communication cycle in microticks. Valid values are 640 to
640000 uT.
pOffsetCorrectionOut
Holds the maximum permitted offset correction value to be applied by the internal clock
synchronization algorithm (absolute value). The CC checks only the internal offset correction
value against the maximum offset correction value. Valid values are 5 to 15266 uT.
pRateCorrectionOut
Holds the maximum permitted rate correction value to be applied by the internal clock
synchronization algorithm. The CC checks only the internal rate correction value against the
maximum rate correction value (absolute value). Valid values are 2 to 1923 pT.
pSingleSlotEnabled
Selects the initial transmission slot mode. In SINGLE slot mode the CC may only transmit in
the preconfigured key slot.
1 = SINGLE Slot Mode (default after hard reset)
0 = ALL Slot Mode.
pWwakeupChannel
With this bit the Host selects the channel on which the CC sends the Wakeup pattern. The CC
ignores any attempt to change the status of this bit when not in DEFAULT_CONFIG or
CONFIG state.
1 = Send wakeup pattern on channel B
0 = Send wakeup pattern on channel A
pWakeupPattern
Configures the number of repetitions (sequences) of the Tx wakeup symbol. Valid values are 2
to 63.
VExternOffsetControl
By writing to vExternOffsetControl is enabled as specified below. Should be modified only
outside NIT.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 115 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

00, 01 = No external offset correction

10 = External offset correction value subtracted from calculated offset correction value

11 = External offset correction value added to calculated offset correction value.
vExternRateControl

By writing to vExternRateControl is enabled as specified below. Should be modified only

outside NIT.

00, 01 = No external rate correction

10 = External rate correction value subtracted from calculated rate correction value

11 = External rate correction value added to calculated rate correction value.
Reserved[16]

Reserved Dwords for possible later use.

See Also
fcbFRSetCcConfiguration, fcoFRGetCcConfiguration, fcFRBaudRate

5.2.3 FCBFRSETCCREGISTER

This function writes a value in a given register of the selected communication controller. Not every register
can be written (e.g. the registers belonging to the message buffer configuration or some interrupt settings).

fcError fcbFRSetCcRegister(
fcHandle hFlexCard,
fcCC CC,
fcDword address,
fcDword value

))

Parameters
hFlexCard
[IN] Handle to a FlexCard
cC
[IN] Communication controller index
address
[IN] Address of the CC register to be written. Must be a multiple of 4 bytes, otherwise an error

will be returned
value

[IN] The value to be written

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information. If the register can not be written the error
code REGISTER_NOT_WRITEABLE is returned.

Remarks
For a register description, refer to the specification of the corresponding communication controller.
Modifying one of the following registers will reset message buffers with their default settings (FIFO
receive buffers). The user's message buffers configuration will not be valid anymore.
Bosch E-Ray: MHDC (0x0098) and GTUC7 (0x00B8).

Information

Not all register of a communication controller can be set. The base API will modify
some parameters so that the operating of the FlexCard is guaranteed (e.g.
interrupt settings). Access is denied to all registers which are used for message

buffer configuration.

See Also
fcCC, fcbFRGetCcRegister

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 116 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

5.2.4 FCBFRGETCCREGISTER
This function reads and returns the content of a given register of the selected communication controller.

fcError fcbFRGetCcRegister(
fcHandle hFlexCard,
fcCC CC,
fcDword address,
fcDword* pValue

))

Parameters

hFlexCard
[IN] Handle to a FlexCard

cc
[IN] Communication controller index

address
[IN] Address of the CC register to be read. Must be a multiple of 4 bytes, otherwise an error will
be returned

pValue
[OUT] The content of the desired CC register.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information. If the register cannot be read the error code
REGISTER_NOT_READABLE is returned.

Remarks
Not every register can be read. For a register description, refer to the specification of the
corresponding communication controller.

See Also
fcCC, fcbFRSetCcReqister

Example

fcDword value = OXFFFFFFFF;
fcDword address = 0x0B8;
fcCC eCC = fcCC1l;

if (0 "= address % 4) return; //address not a multiple of 4 bytes!

fcError e = fcbFRGetCcRegister(hFlexCard,eCC,address,&value);
if (0 == e)
{

printf(“Register Ox%X=0x%X", address, value);
}

5.2.5 FCBFRSETCCCONFIGURATIONCHI

This function configures the selected communication controller of the FlexCard with a FlexConfig
compatible configuration string (CHI File). The configuration string contains the global FlexRay parameter
and/or the message buffer configuration. The payload data for transmit message buffers are not set by this
function. Before the configuration of the communication controller starts, all message buffers are reset to
their default settings (FIFO buffer).

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 117 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcError fcbFRSetCcConfigurationChi(
fcHandle hFlexCard,
fcCC CC,
const char* szChi

))

Parameters
hFlexCard

[IN] Handle to a FlexCard.
CcC

[IN] Communication controller index

szChi
[IN] Pointer to null-terminated CHI content string (refer to the CHI string example section).
Please note: Do not use the CHI file name here, but the content of the CHI file as parameter
value.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Information

Internally, the function uses the fcbFRSetCcRegister function; therefore the same
restrictions as for writing registers exist.

See Also
fcCC, fcbFRSetCcReqister

Example
See fcbFRSetCcConfigurationChi

5.2.6 FCBFRSETCCCONFIGURATIONCANDB

This function configures the communication controller of the FlexCard with a CANdb compatible string. The
configuration string contains the global FlexRay parameter and/or the message buffer configuration. Before
the configuration of the communication controller starts, all message buffers are reset to their default
settings (FIFO buffer).

TfcError fcbFRSetCcConfigurationCANdb(
fcHandle hFlexCard,
fcCC CC,
const char* szCanDb

D)

Parameters
hFlexCard

[IN] Handle to a FlexCard
ccC

[IN] Communication controller index
szCanDb

[IN] Pointer to null-terminated CANdb string

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 118 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks

This function is only available in the Windows FlexCard driver. The FlexCard Linux and Xenomai

drivers don’t support this function.

Information

i

restrictions as for writing a register exist.

Internally, the function uses the fcboFRSetCcRegister function; therefore the same

5.2.7 FCBFRSETCCCONFIGURATION

This function configures the FlexRay communication controller.

fcError fcbFRSetCcConfiguration(
fcHandle hFlexCard,
fcCC CC,
fcFRCcConfig cfg

[IN] The FlexCard communication controller which should be configured. For FlexCard Cyclone

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
CcC
I (SE) this parameter will always be set to fcCC1.
Cfg

[IN] The FlexRay communication controller configuration.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also

fcCC, fcFRCcConfig, fcbFRGetCcConfiguration

Example

fcCC eCC = fcCC1;
fcFRCcConfig frCcConfigSet;

memset(&frCcConfigSet, 0, sizeof(fcFRCcConfig));

// SUCC1

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// SUCC2

frCcConfigSet.
frCcConfigSet.

// SUCC3

frCcConfigSet.
frCcConfigSet.

// NEMC

frCcConfigSet.

pKeySlotUsedForStartup = O;
pKeySlotUsedForSync = 0O;
gColdStartAttempts = 31;
pAllowPassiveToActive = 0;
pWakeupChannel = 0;
pSingleSlotEnabled = O;
pAllowHaltDueToClock = 1;
pChannelsMTS = fcChannelNone;
pChannels = fcChannelBoth;

pdListenTimeout = 80242;
gListenNoise = 2;

gMaxWithoutClockCorrectionPassive

:2;
gMaxWithoutClockCorrectionFatal = 2;

gNetworkManagementVectorLength = O;

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 119 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

// PRTC1

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// PRTC2

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// MHDC

frCcConfigSet.
frCcConfigSet.

// GTUC1

frCcConfigSet.

// GTUC2

frCcConfigSet.
frCcConfigSet.

// GTUC3

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// GTUC4

frCcConfigSet.
frCcConfigSet.

// GTUCS

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// GTUC6

frCcConfigSet.
frCcConfigSet.

// GTUC7

frCcConfigSet.
frCcConfigSet.

// GTUCS8

frCcConfigSet.
frCcConfigSet.

// GTUC9

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

// GTUC10

frCcConfigSet.
frCcConfigSet.

// GTUC11

frCcConfigSet.
frCcConfigSet.
frCcConfigSet.
frCcConfigSet.

gdTSSTransmitter = 7;
gdCASRxLowMax = 99;

BaudRate = fcFRBaudRatelOM;
gdWakeupSymboIRxWindow = 301;

pWakeupPattern = 2;

gdWakeupSymbolRxldle = 59;
gdWakeupSymbolRxLow = 54;
gdWakeupSymbolTx1dle = 180;
gdWakeupSymbolTxLow = 60;

gPayloadLengthStatic =
pLatestTx = O;

4;

pMicroPerCycle = 40000;

gMacroPerCycle 1000;
gSyncNodeMax = 2;

pMicrolnitialOffsetA
pMicrolnitialOffsetB
pMacrolnitialOffsetA
pMacrolnitialOffsetB

(I
NNOO

gdNIT = 40;
gOffsetCorrectionStart

pDelayCompensationA
pDelayCompensationB
pClusterDriftDamping =
pDecodingCorrection =

0;

0;
1;

40;

pdAcceptedStartupRange = 258;

pdMaxDrift = 121;

gdStaticSlot = 22;

gNumberOfStaticSlots = 43;

gdMinislot = 11;

gNumberOfMinislots = 0;

gdActionPointOffset = 1;
gdMinislotActionPointOffset
gdDynamicSlotldlePhase = 2;

pOffsetCorrectionOut = 81;

pRateCorrectionOut = 121;
vExternOffsetControl = 0;
vExternRateControl = O;

pExternOffsetCorrectio
pExternRateCorrection

IS

0;

// Configure the FlexRay CC

e =

TfcbFRSetCcConfiguration(hFlexCard, eCC, frCcConfigSet);

if (0 '=¢e) {/* Error handling */};

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

= 991;

Page 120 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

5.2.8 FCBFRGETCCCONFIGURATION
This function reads the FlexRay communication controller configuration.

fcError fcbFRGetCcConfiguration (
fcHandle hFlexCard,
fcCC CC,
fcFRCcConfig* pCfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
CcC
[IN] The FlexCard communication controller which should be configured. For FlexCard Cyclone
I (SE) this parameter will always be set to fcCC1.
pCfg

[OUT] Pointer to the configuration parameters of the FlexRay communication controller.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcFRCcConfig, fcbFRSetCcConfiguration

Example

fcCC eCC = fcCC1;
fcFRCcConfig frCcConfigGet;

e = fcbFRGetCcConfiguration(hFlexCard, eCC, &frCcConfigGet);
if (0 1= e) {/* Error handling */};

5.2.9 FCBFRCONFIGUREMESSAGEBUFFER

This function configures transmit, receive and FIFO message buffers of the selected communication
controller. Configuring message buffers is only allowed if the communication controller is in its configuration
state, fcStateConfig.

fcError fcbFRConfigureMessageBuffer(
fcHandle hFlexCard,
fcCC CC,
fcDword* pBufferld,
fcMsgBufCfg cfg

):

Parameters

hFlexCard
[IN] Handle to a FlexCard

cC
[IN] Communication controller index

pBufferld
[OUT] Message buffer identifier. If the configuration was successful the message buffer
identifier is greater than 0. This identifier will be required to transmit the content of the buffer (in
the case of a transmit buffer).

Cfg
[IN] Message buffer configuration parameters

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 121 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
Before configuring the message buffers, it is necessary to set up the global communication
parameters (cluster parameters). Internally the FlexCard uses the FIFO buffers as receive buffers,
therefore we recommend using FIFO message buffers as much as possible.

See Also
fcCC, fcMsgBufCfqg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo

Example

// The following code configures a transmit buffer,
// which only transmits on cycles 6,14,22,30,

fcMsgBufCfg cfg;

memset(&cfg, 0, sizeof(FfcMsgBufCfg));
cfg.Type = fcMsgBufTx;
cfg.ChannelFilter = fcChannelA;

// Repetition: each 8 cycles
// Offset: 6 (First cycle will be cycle number 6)

cfg.CycleCounterFilter = 0x8 + 0x6;

cfg.Tx.Frameld = 61;

cfg.Tx.PayloadLength = 10;
cfg.Tx.PayloadLengthMax = 127;
cfg.Tx.PayloadPreamblelndicator = 0;
cfg.Tx.SyncFramelndicator = 0;
cfg.Tx.StartupFramelndicator = 0;
cfg.Tx.TxAcknowledgeEnable= O;
cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot;

fcCC eCC = fcCC1;
unsigned int bufferldx = 0;
fcError e = fcbFRConfigureMessageBuffer(hFlexCard,eCC,&bufferldx,cfg);

5.2.10 FCBFRRECONFIGUREMESSAGEBUFFER

This function reconfigures transmit, receive and FIFO message buffers of the selected communication
controller. A reconfiguration is only allowed for message buffers which are already configured. This function
is available in all states of the CC. Not all configuration settings can be modified in monitoring state. Refer
to the documentation of the message buffer structures for further details.

fcError fcbFRReconfigureMessageBuffer(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferlid,
fcMsgBufCfg cfg

D)

Parameters
hFlexCard
[IN] Handle to a FlexCard
cC
[IN] Communication controller index
bufferid
[IN] The identifier of the message buffer which should be reconfigured.
Cfg
[IN] Message buffer configuration parameters.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 122 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

See Also
fcCC, fcMsgBufCfqg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo,
fcbFRConfigureMessageBuffer, fcoFRGetMessageBuffer

5211 FCBFRGETMESSAGEBUFFER
This function reads a specific message buffer configuration.

fcError fcbFRGetMessageBuffer(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferlid,
fcMsgBufCfg* pCfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
cC
[IN] Communication controller index
bufferid
[IN] The identifier of the message buffer to be read
pCfg

[OUT] The configuration parameters of the specified message buffer.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

Remarks
The buffer with id 1 is always a FIFO message buffer.

See Also
fcCC, fcMsgBufCfqg, fcMsgBufCfgTx, fcMsgBufCfgRx, fcMsgBufCfgFifo,
fcbFRConfigureMessageBuffer

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 123 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example

// Get all configured transmit message buffers of communication controller 1
fcCC eCC = fcCC1l;

std: :map<unsigned int, fcMsgBufCfg> Buffers;

unsigned int bufferldx = 1; // The first valid buffer is 1

while (true)

fcMsgBufCfg cfg;

// as long no error occurs we try to get each buffer

fcError e = fcbFRGetMessageBuffer(m_hFlexCard,eCC,bufferldx,&cfg);
if (0 = e) break;

// is this a tx buffer, then add it to our list
if (fcMsgBufTx == cfg.Type) Buffers[bufferldx] = cfg;

// next buffer index
bufferldx++;

5.2.12 FCBFRRESETMESSAGEBUFFERS

This function resets the communication controller message buffers. After calling this function, all message
buffers are configured as receive FIFO — with maximal payload (depends on the communication controller).

fcError fcbFRResetMessageBuffers(
fcHandle hFlexCard,

fcCC CC
)
Parameters
hFlexCard

[IN] Handle to a FlexCard
cC

[IN] Communication controller index

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

5.2.13 FCBFRSETSOFTWAREACCEPTANCEFILTER

This function configures the frame ids accepted by the device driver. Only the ids which are in the filter list
are forwarded to the user application, all other frames are rejected. To accept all frames set the parameters
pData to NULL and nSize to zero or configure a single frame id of zero.

fcError fcbFRSetSoftwareAcceptanceFilter(
fcHandle hFlexCard,
fcCC CC,
fcChannel channel,
fcDword* pData,
fcDword size

))

Parameters
hFlexCard

[IN] Handle to a FlexCard
cC

[IN] Communication controller index
channel

[IN] FlexCard channel(s) concerned by the filter

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 124 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

pData

[IN] Pointer to an fcDword array containing the ids accepted by the device driver. Each element

(fcDword) contains one frame identifier.
fcDword fcDword

IDy

fcDword fcDword

ID z

ID x

size
[IN] Number of ids in the array.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Example

// Configure the filter to get only
// - the frames from frame id 15 and 60 on cc 1, channel A
// - and the frame ids 1,2,3,6 on cc 1, channel B

fcDword 1dsChA[2]
fcDword 1dsChB[4]
fcCC eCC = fcCC1;

{15,603} ;
{1,2,3,6};

fcError e = fcbFRSetSoftwareAcceptanceFilter(hFlexCard,eCC,fcChannelA, idsChA,2);
//..
e = fcbFRSetSoftwareAcceptanceFilter(hFlexCard,eCC,fcChannelB, idsChB,4);

5.2.14 FCBFRSETHARDWAREACCEPTANCEFILTER

This function configures the FlexRay frame ids accepted by the FlexCard firmware. Only the FlexRay ids
which are in the filter list are forwarded to the device driver, all other FlexRay frames are rejected. To
accept all frames set the parameters pData to NULL and size to zero or configure a single frame id of
zero. When using this function, receiving frames is faster than using fcboFRSetSoftwareAcceptanceFilter.

fcError fcbFRSetHardwareAcceptanceFilter(
fcHandle hFlexCard,
fcCC CC,
fcChannel channel,
fcDword* pData,
fcDword size,
bool reset

))

Parameters
hFlexCard
[IN] Handle to a FlexCard.
cC
[IN] Communication controller index.
channel
[IN] FlexCard channel(s) concerned by the filter.
pData
[IN] Pointer to an fcDword array containing the ids accepted by the device driver. Each element
(fcDword) contains one frame identifier.
fcDword fcDword
ID x IDy

fcDword fcDword

ID z

size
[IN] Number of ids in the array.

reset
[IN] Set to true to reset the filter, before configure a new filter. Set to false to add the frame
identifier to the existing filter.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 125 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcChannel, fcbReceive

5.2.15 FCBFRSETCCTIMERCONFIG

This function configures the communication controller timer interrupt. To get a notification when the
communication controller timer interval elapsed, an event of type fcNotificationTypeFRCcTimer has
to be registered by the function fcbSetEventHandleV2. Additionally the communication controller timer can
be enabled / disabled by this function.

fcError fcbFRSetCcTimerConfig(
fcHandle hFlexCard,
fcCC CC,
fcCcTimerCfg cfg,
bool bEnable

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
cC
[IN] Communication controller index
Cfg

[IN] The communication controller timer configuration.
bEnable

[IN] Set to true to enable the cc timer, and to false to disable it.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcbSetEventHandleV2, fcbSetEventHandleSemaphore, fcCcTimerCfg, fcbFRGetCcTimerConfig

Example
See Example fcbFRCalculateMacrotickOffset

5.2.16 FCBFRGETCCTIMERCONFIG
This function reads the communication controller timer configuration.

TfcError fcbFRGetCcTimerConfig(
fcHandle hFlexCard,
fcCC CC,
fcCcTimerCfg* pCfg

D)

Parameters
hFlexCard

[IN] Handle to a FlexCard.
CcC

[IN] Communication controller index

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 126 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

pCfg
[OUT] The configuration parameters of the cc timer.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcCcTimerCfg, fcbFRSetCcTimerConfig

Example
See Example fcbFRCalculateMacrotickOffset

5.2.17 FCBFRCALCULATEMACROTICKOFFSET
This function calculates the macrotick offset for a specific cycle position in a FlexRay cycle.

fcError fcbFRCalculateMacrotickOffset(
fcHandle hFlexCard,
fcCC CC,
fcCyclePos CyclePosition,
fcDword SlotOrMiniSlotld,
fcDword* pValue

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
cC
[IN] Communication controller index
CyclePosition
[IN] The cycle position of type fcCyclePos.
SlotOrMiniSlotld
[IN] This parameter is used for a cycle position of fcCyclePosStaticSlot and
fcCyclePosDynamicMiniSlot to calculate the macrotick offset for a static slot or a dynamic
mini slot id.
pValue

[OUT] The macrotick offset value.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcCyclePos, fcCcTimerCfg, fcoFRSetCcTimerConfig

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 127 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example
//

// Configure the CC 1 timer to get notified of the static slot id 9 start,

// Check the configuration and start the CC 1 timer
//

fcCC eCC = fcCC1;

fcCcTimerCfg ccTimerConfigSet, ccTimerConfigGet;
memset(&ccTimerConfigSet, 0, sizeof(fcCcTimerCfg));
memset(&ccTimerConfigGet, 0, sizeof(fcCcTimerCfg));

ccTimerConfigSet.CycleCounterFilter = 1;
ccTimerConfigSet._ContinuousMode = 1;
ccTimerConfigSet._MacrotickOffset = O;

// Calculate the macrotick offset for static slot id 9

fcDword dwMTOffset = 0O;

fcDword dwSlotld = 9;

fcError e = fcbFRCalculateMacrotickOffset(hFlexCard, eCC,
fcCyclePosStaticSlot, dwSlotld, &dwMTOffset);

if (0 '=¢e) {/* Error handling */};

else ccTimerConfigSet.MacrotickOffset = dwMTOffset;

// Configure the CC 1 timer, but don’t start
e = fcbFRSetCcTimerConfig(hFlexCard, eCC, ccTimerConfigSet, false);
if (0 '=¢e) {/* Error handling */};

// Read the configuration
e = fcbFRGetCcTimerConfig(hFlexCard, eCC, &ccTimerConfigGet);
if (0 = ¢e) {/* Error handling */};

// Check the configured timer

if (ccTimerConfigSet.CycleCounterFilter !'= ccTimerConfigGet.CycleCounterFilter

|| ccTimerConfigSet.ContinuousMode != ccTimerConfigGet.ContinuousMode

|l ccTimerConfigSet.MacrotickOffset = ccTimerConfigGet.MacrotickOffset)

{return;}
// We passed the check, now start the cc timer with this config
e = fcbFRSetCcTimerConfig(hFlexCard, eCC, ccTimerConfigSet, true);
if (0 1= e) {/* Error handling */};

// Wait for the CC 1 timer event ...

53 TRANSMIT

53.1 FCBFRTRANSMIT

This function writes a data frame into a communication controller transmit buffer of the FlexCard. The frame
should normally be transmitted in the next cycle. If the transmit acknowledgment is activated, an
acknowledge packet is generated as soon as the frame has been transmitted. This function should only be
called when the FlexCard is in normal active state or when all message buffer configurations have been

done.

fcError fcbFRTransmit(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferlid,
fcWord * pPayload,
fcByte payloadlLength

)

Parameters
hFlexCard

[IN] Handle to a FlexCard

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 128 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

cC
[IN] Communication controller index
bufferid
[IN] The id of the message buffer used for the transmission
pPayload
The payload data to be transmitted
payloadLength
The size of the payload data (number of 2-byte words)

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.
The transmission may fail, if the buffer is currently in use (fcGetErrorCode returns
MSG_BUFFER_BUSY). In that case retry later.

Remarks
The payload data has to be organized as follows: if Data0 is the first byte to transmit and Data1 the
second byte to transmit, then the high byte (Bit 8 — 15) of payload[0] contains Data1, the low byte
(Bit0-7) of payload[0] contains Data0, etc.

Parameter payload payload[0] (Word 0) payload[1] (Word 1)
High byte Low byte High byte Low byte
FlexRay payload segment Data 1 Data 0 Data 3 Data 2

Example

fcCC eCC = fcCC1l;
fcWord payload[fcPayloadMaximum] ;
payload[0] = 0x0001; // Update your payload data

fcError e = fcbFRTransmit(m_hFlexCard,eCC,bufferldx,payload,payloadLength);

5.3.2 FCBFRTRANSMITSYMBOL

This function transmits a symbol in the symbol window segment. It can only be called if the selected
communication controller is in the POC state NORMAL_ACTIVE. For a list of available symbols to be
transmitted, see the enumeration fcSymbolType.

fcError fcbFRTransmitSymbol(
fcHandle hFlexCard,
fcCC CC,
fcSymbolType type

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
cC
[IN] Communication controller index
type

[IN] Type of symbol to transmit

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 129 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

6 OPTIONAL CAN API

The following section describes the data structures and features used for CAN functionality. To use these
functions the FlexCard must be licensed for CAN.

Information

All enumerations, structures and function in this chapter are initially supported by
FlexCard Windows API version S4V0-F and FlexCard Linux/Xenomai API version
S4V2-F.

6.1 BAsic CAN WORKFLOW

Figure 11 shows a typical CAN workflow. Please note that the message buffers may be reconfiguered
during monitoring, but the CAN configuration may only be changed when monitoring is not running.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 130 of 180

Enumerate the installed fcbGetEnumFlexCardsV3
FlexCards in the system fcFreeMemory
[No FlexCards] [FlexCards available]
’ > Open FlexCard fcbOpen

fcbGetInfoFlexCard
fcbCANGetMessageBuffer

[Configure FlexCard j FfcbCANSetMessageBuffer

fcbCANSetCcConfiguration
fcbSetTimer
fcbSetEventHandleV2

Start Monitoring fcbCANMonitoringStart

 while

[Monitoring != Abort j <>
_d: __________________________
(Receive frames
fcbReceive
fcbCANGetCcState fcbCANTransmit
[Frames=0]
f
Q
3
&
\%
2
o
Stop Monitoring fcbCANMonitoringStop

fcbClose

Close FlexCard

Figure 11: Typical CAN function workflow

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 131 of 180

6.2 INITIALIZATION

6.2.1 ENUMERATIONS

6.2.1.1 FCCANCCSTATE

This enumeration defines the CAN communication controller states. For more details about CAN
communication controller states, please refer to the CAN Protocol Specification.

Typedef enum FcCANCcState

fcCANCcStateUnknown = 0,

FfcCANCcStateConfig,

TfcCANCcStateNormalActive,

fcCANCcStateWarning,

fcCANCcStateErrorPassive,

TcCANCcStateBusOff,
}fcCANCcState;

Members
fcCANCcStateUnknown
Communication controller state is unknown.
TfcCANCcStateConfig

Communication controller is in configuration state.
TfcCANCcStateNormalActive

Communication controller is in normal active state.
TfcCANCcStateWarning

Communication controller is in error warning state. At least one of the error counters has

reached the error warning limit of 96.
fcCANCcStateErrorPassive

Communication controller is in error passive state. No CAN messages can be sent anymore

except CAN passive errors.
FfcCANCcStateBusOff

Communication controller is in bus off state. No CAN messages can be sent anymore.

See Also
fcoCANGetCcState, fcoCANMonitoringStart

6.2.1.2 FCCANMONITORINGMODE
This enumeration defines the different modes available, used to monitor a CAN cluster.

Typedef enum FcCANMonitoringMode
fcCANMonitoringNormal o,
fcCANMonitoringActive fcCANMonitoringNormal,
fcCANMonitoringSilent 1,
TfcCANMonitoringPassive = fcCANMonitoringSilent,

}fcCANMonitoringMode;

Members

fcCANMonitoringNormal

fcCANMonitoringActive
The FlexCard will switch from configuration to normal active state as soon as possible. In
normal active state CAN frames can be received and transmitted.

fcCANMonitoringSilent

TfcCANMonitoringPassive
The FlexCard will switch from configuration to normal passive state as soon as possible. In
normal passive state CAN frames can be received only.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 132 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcoCANMonitoringStart

6.2.2 FCBCANMONITORINGSTART

This function is used to start the monitoring of a CAN bus. Once called, the function changes the
communication controller state from configuration state to normal active state. The current communication
controller state can be read using the function fcbCANGetCcState. If the FlexCard is started the function
fcbCANGetCcState will return the value fcCANCcStateNormalActive.

fcError fcbCANMonitoringStart(
fcHandle hFlexCard,
fcCC CC,
bool resetTimestamps,
fcCANMonitoringMode mode

)

Parameters
hFlexCard
[IN] Handle to a FlexCard.
CcC

[IN] Index of the CAN communication controller.
restartTimestamps

[IN] Set this parameter to false to restart the measurement without resetting the FlexCard
timestamp. Set it to true to start the measurement from the beginning. The timestamps have
micro second resolution.

Mode
[IN] The monitoring mode. See fcCANMonitoringMode for details which monitoring mode is
supported.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks
After the monitoring has started, the user should check if the integration in the cluster was
successful, fcbCANGetCcState should return the state fFcCANCcStateNormalActive.

Information

Q After the monitoring has successfully started, the receive process has to be

started as soon as possible to avoid an overflow (error packet
fcErrFlexcardOverflow is received). Once an overflow occurred, no more packets
can be received. The monitoring has to be stopped and started again.

See Also
fcoCANMonitoringStop, fcoCANGetCcState, fcCANMonitoringMode

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 133 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example

// Precondition: valid flexcard handle exists and the flexcard is
// already configured.

fcCC eCC = fcCC1l;
fcError e = fcbCANMonitoringStart(hFlexCard,eCC, true, fcCANMonitoringNormal);
if (0 == ¢e)
{]
bool active = false;
bool timeout = false;
DWORD maxTime = ::GetTickCount() + 2000;
TfcCANCcState state = fcCANCcStateUnknown;

// Check if the FlexCard is in CAN normal active state
do

TcbCANGetCcState(hFlexCard, eCC, &state);
active= (state == fcCANCcStateNormalActive);
timeout = ::GetTickCount() >= maxTime;

} while (! active && ! timeout);

if (active)

{

// Start your receive thread/routine

//
3
else
// if we timed out, we stop the monitoring
fcbCANMonitoringStop(hFlexCard) ;
¥
else
{]
// error handling ..
by
6.2.3 FCBCANMONITORINGSTOP

This function stops the CAN bus monitoring of the selected communication controller. The communication
controller is set back in its configuration state.

fcError fcbCANMonitoringStop(
fcHandle hFlexCard,

fcCC CC
)
Parameters
hFlexCard

[IN] Handle to FlexCard.
cC

[IN] Index of the CAN communication controller.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcoCANMonitoringStart

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 134 of 180

6.2.4 FCBCANGETCCSTATE

This function returns the current CAN communication controller state. For a description of possible states,
refer to the enumeration fcCANCcState.

TfcError fcbCANGetCcState(
fcHandle hFlexCard,
fcCC CC,
FfcCANCcState* pState

D)

Parameters
hFlexCard

[IN] Handle to a FlexCard.
CcC

[IN] communication controller index.
pState
[OUT] Current CAN communication controller state.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See
fcbCANMonitoringStart, fcoCANMonitoringStop

Example
For an example, see fcbCANMonitoringStart.

6.3 CONFIGURATION

6.3.1 ENUMERATIONS

6.3.1.1 FCCANBUFCFGTYPE

For the transmission and reception of CAN frames the communication controller provides different types of
message buffers. For sending and receiving error frames or for receiving trigger packets, no message
buffer is needed. Each message buffer can be assigned with one of the following specific types.

Typedef enum FcCANBufCfgType
{

FfcCANBufCfgTypeNone = O,
FfcCANBufCfgTypeCommon,
TcCANBufCTgTypeRxAll,
FfcCANBUfCfgTypeRx,
TcCANBUfCFgTypeTx,
TcCANBufCfgTypeRemoteRx,
TcCANBufCfgTypeRemoteTx,
}fcCANBuUfCfgType;

Members
TcCANBufCfgTypeNone
The message buffer is not used. It can be used to reset a message buffer.
fcCANBufCFfgTypeCommon

The message buffer is reserved for internal use only. (No support.)
TcCANBUTCFgTypeRxAll

The message buffer is used for receiving all incoming CAN data and remote frames.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 135 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

TcCANBufCfgTypeRx
The message buffer is used as a receive buffer for either a specific message or a set of

messages.
TcCANBUTCFgTypeTx

The message buffer is used as a transmit buffer for a specific CAN message ID.
fcCANBufCfgTypeRemoteRx

The message buffer is used as a remote receive buffer. It is used for sending a remote request

and receiving the according replying message.
TcCANBufCfgTypeRemoteTx

The message buffer is used as a remote transmission buffer. It can be transmitted
automatically when a remote request is received.

See Also
fcCANBufCfg

6.3.1.2 FCCANBUFCFGRXALLCONDITION

This enumeration defines the acceptance conditions of an fcCANBufCfgRxAIl buffer. To accept all incoming
messages you need to binary OR all of them.

Typedef enum FcCANBufCfgRxAllCondition

TcCANRXAI INone = 0x0,
FfcCANRXAlLIIDStandard = 0Ox1,
TcCANRXAIL I IDExtended = 0x2,
TcCANRXAl IFrameData = 0x4,
TcCANRXAl IFrameRemote = 0x8,

}fcCANBufCfgRxAlICondition;

Members
TcCANRXAIl INone

Accept no frames.
FfcCANRXAlL I IDStandard

Accept CAN frames with standard identifiers.
FfcCANRXAI 1 IDExtended

Accept CAN frames with extended identifiers.
FfcCANRXAlIFrameData

Accept all CAN data frames.
TfcCANRXxAI IFrameRemote

Accept all CAN remote frames.

See Also
fcCANBuUfCfgRxAll
6.3.2 STRUCTURES
6.3.2.1 FCCANBUFCFGRXALL

This structure specifies a special CAN receive message buffer. This buffer type is used to receive all
frames of the specified conditions.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 136 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct FcCANBufCfgRxAll
{

fcDword Condition;
fcDword Reserved[2];
}TcCANBUFCTgRxAll ;

Members
Condition
The acceptance condition for this buffer, which can be OR-ed.
At least one id condition and one frame condition must be used to receive frames.
Reserved
Reserved for future use.

See Also
fcCANBufCfg, fcCANBufCfgRxAllCondition

6.3.2.2 FCCANBUFCFGRX

This structure specifies the configuration of a CAN receive message buffer. This buffer type is used to
receive a CAN message with a specific CAN ID only or a range of CAN IDs.

Typedef struct FcCANBufCFfgRx
{

fcDword 1D;

fcDword MasklID;

fcDword enablelDExtended

fcDword enableMask

fcDword Reserved[2];
}fcCANBUfCFfgRx;

t1;
t1;

Members

ID
Defines the CAN identifier to be received in this message buffer.
Valid values for a standard CAN Id range from 0x0 — Ox7FF.
Valid values for an extended CAN Id range from 0x0 — Ox1FFFFFFF.

MaskID
The bit mask. The corresponding identifier bits are used for acceptance filtering. If it is equal 0,
all IDs will be accepted.

enablelDExtended
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the
message buffer is defined for standard CAN identifiers. It's not possible to receive both
versions in one message buffer.

enableMask
Set this flag to 1 to enable the acceptance mask.

Reserved
Reserved for future use.

See Also
fcCANBufCfg

6.3.2.3 FCCANBUFCFGTX

This structure specifies the configuration of a CAN transmit message buffer. This buffer type is used to
transmit a CAN message with a specific CAN ID only.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 137 of 180

Typedef struct FcCANBufCfgTx
{

fcDword 1D;

fcByte Data[8];

fcDword DLC : 4;

fcDword enablelDExtended : 1;

fcDword enableTxAcknowledge : 1;

fcDword enableTxRequest : 1;

fcDword newData : 1;

fcDword Reserved[2];
}FcCANBUfCTgTX;

Members

ID
Defines the CAN identifier to be received in this message buffer.
Valid values for a standard CAN Id range from 0x0 — Ox7FF.
Valid values for an extended CAN Id range from 0x0 — Ox1FFFFFFF.

Data
Defines the data for transmission. All of the 8 data bytes can be set. The corresponding DLC
parameter is used to define the number of bytes to transmit.

DLC
Defines the data length (in bytes) to be transmitted.

enablelDExtended
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the
message buffer is defined for standard CAN identifiers. It's not possible to receive both
versions in one message buffer.

enableTxAcknowledge
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet
with a direction flag = 1 (Tx), if the data is transmitted successfully.

enableTxRequest
Set this flag to 1 to indicate that the message is requested to be sent as soon as the
communication controller is in state ‘normal active’.

newData
Set this flag to 1 to update the data of the message buffer. Set to 0 if no new data shall be
updated.

Reserved
Reserved for future use

See Also
fcCANBufCfq, fcCANPacket

6.3.2.4 FCCANBUFCFGREMOTERX

This structure specifies a CAN remote receive message buffer. This buffer type is used to send a CAN
remote message to request a CAN message with the same CAN identifier. This will be received into the
message buffer.

Typedef struct fcCANBufCfgRemoteRx
{

fcDword 1D;

fcDword DLC

fcDword enablelDExtended

fcDword enableTxAcknowledge

fcDword enableTxRequest

fcDword Reserved[2];
}fcCANBufCfgRemoteRx;

PR

Members
ID

Defines the CAN identifier to be received in this message buffer.
Valid values for a standard CAN Id range from 0x0 — Ox7FF.
Valid values for an extended CAN Id range from 0x0 — Ox1FFFFFFF.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 138 of 180

DLC
Defines the data length (in bytes) to be transmitted.

enablelDExtended
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the
message buffer is defined for standard CAN identifiers. It's not possible to receive both
versions in one message buffer.

enableTxAcknowledge
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet
(RemoteTx) if the data are transmitted successfully.

enableTxRequest
Set this flag to 1 to indicate that the message is requested to be sent as soon as the
communication controller is in state ‘normal active’.

Reserved
Reserved for future use.

See Also
fcCANBufCfq, fcCANPacket

6.3.2.5 FCCANBUFCFGREMOTETX

This structure specifies a CAN remote transmit message buffer. This buffer type is used to transmit a CAN
message when this Id is requested by a corresponding CAN remote frame.

Typedef struct FfcCANBufCfgRemoteTx

fcDword 1D;

fcByte Data [8];

fcDword DLC

fcDword enablelDExtended

fcDword enableTxAcknowledge :

fcDword enableTxRequest

fcDword enableAutoResponse

fcDword newData

fcDword Reserved[2];
}fcCANBufCfgRemoteTx;

RPRRREA

Members
ID

Defines the CAN identifier to be responded with the same id.
Valid values for a standard CAN Id range from 0x0 — Ox7FF.

Valid values for an extended CAN Id range from 0x0 — Ox1FFFFFFF.

Data
Defines the data for transmission. All of the 8 data bytes can be set. The corresponding DLC
parameter is used to define the number of bytes to transmit.

DLC
Defines the data length (in bytes) to be transmitted.

enablelDExtended
If set to 1 the message buffer is defined for extended CAN identifiers only. If set to 0 the
message buffer is defined for standard CAN identifiers. It's not possible to receive both
versions in one message buffer.

enableTxAcknowledge
Set this flag to 1 to enable the transmit acknowledge. The FlexCard generates a CAN packet
(RemoteTx) if the data are transmitted successfully and the parameter enableAutoResponse
is set to 1 too.

enableTxRequest
Set this flag to 1 to indicate that the message is requested to be sent as soon as the
communication controller is in state ‘normal active’.

enableAutoResponse
Set this flag to 1 to enable the buffer to transmit a frame as soon as a corresponding CAN
remote frame is received.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 139 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

newData

Set this flag to 1 to update the data of the message buffer. Set to 0 if no new data shall be

updated.
Reserved

Reserved for future use.

See Also
fcCANBufCfq, fcCANPacket

6.3.2.6 FCCANBUFCFG
This structure describes the configuration of a CAN message buffer.

Typedef struct FcCANBufCfg
TfcCANBufCfgType Type;

union
{
FfcCANBufCfgCommon Common;
FcCANBUFCTFgRXAIl RxAII;
TcCANBUfCFgRx Rx;
TcCANBufCfgTx Tx;
FfcCANBufCfgRemoteRx RemoteRx;
FfcCANBufCfgRemoteTx RemoteTx;
¥
}fcCANBufCfg;
Members
Type

Defines the CAN message buffer type. Using type fcCANBufCfgTypeNone disables/resets the

message buffer.

Common

Used for internal purposes. (No support).
RxAll

Receive all buffer configuration.
Rx

Receive buffer configuration.
Tx

Transmit buffer configuration.
RemoteRx

Remote receive buffer configuration.
RemoteTx

Remote transmit buffer configuration.

See Also

fcCANBufCfgType, fcCANBuUfCfgRxAIl, fcCANBufCfgRx, fcCANBuUfCfgTx, fcCANBufCfgRemoteRX,

fcCANBufCfgRemoteTx, fcoCANSetMessageBuffer, fcbCANGetMessageBuffer

6.3.2.7 FCCANCCCONFIG

This structure describes the configuration of a CAN communication controller. Within this function all

message buffers will be reset.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 140 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct FcCANCcConfig

fcWord BaudRatePrescaler;
fcWord SynchronizationJumpWidth;
fcWord TimeSegmentl;
fcWord TimeSegment2;
fcDword enableAutomaticRetransmission :1;
fcDword Reserved[6];
}fcCANCcConfig;

Members
BaudRatePrescaler
Defines the baud rate prescaler (BRP). Valid values are from 0 to 1023.
SynchronizationJumpWidth
Defines the synchronization jump width (SJW). Valid values are from 0 to 3 and must not be
larger than TSEG1 and TSEG2.
TimeSegmentl
Defines the time segment 1 (TSEG1). Valid values are from 0 to 15.
TimeSegment2
Defines the time segment 2 (TSEG2). Valid values are from 0 to 7.
enableAutomaticRetransmission
Set this flag to 1 to enable automatic retransmission. If the CAN communication controller has
lost the arbitration or if an error occurred during the transmission, the message will be
retransmitted as soon as the CAN bus is free again.
Reserved
Reserved for future use.

See Also
fcoCANSetCcConfiguration

Remarks
The baud rate and the sample point calculation of the CAN communication controller depends on
BaudRatePrescaler, SynchronizationJumpWidth, TimeSegmentl and TimeSegment2.
Baud rate [baud] = 16 * 10° [Hz] / ((3 + TSEG1 + TSEG2) * (1 + BRP))
Sample point [%] = 100 * (2 + TSEG1) / (3 + TSEG1 + TSEG2)

Information
Eberspacher Electronics delivers a calculation tool “CANBaudRateCalculator”,
which can be found in the tools directory in the FlexCard program menu.

6.3.3 FCBCANSETCCCONFIGURATION

This function configures the CAN communication controller. This function cannot be called during
monitoring. Before the configuration of the CAN CC starts, all CAN message buffers are reset.

TfcError fcbCANSetCcConfiguration(
fcHandle hFlexCard,
fcCC CC,
FfcCANCcConfig cfg

)

Parameters
hFlexCard

[IN] Handle to a FlexCard.
CcC

[IN] CAN communication controller identifier.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 141 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Cfg
[IN] CAN communication controller configuration parameters.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

See Also
fcoCANGetMessageBuffer, fcCANCcConfig

6.3.4 FCBCANSETMESSAGEBUFFER

This function configures the message buffers of the CAN communication controller. Configuring message

buffers is allowed in all communication controller states.

fcError fcbCANSetMessageBuffer(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferNumber,
fcCANBufCfg cfg,
bool ignoreTxRgstLock

)

Parameters

hFlexCard

[IN] Handle to a FlexCard
cC

[IN] CAN communication controller identifier.
bufferNumber

[IN] Identifier of the message buffer to be configured.
Cfg

[IN] Message buffer configuration parameters.
ignoreTxRgstLock

Set this flag to 1 if you want to force a reconfiguration of this buffer although the previous

message in this buffer was (probably) not transmitted yet.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the

section Error Handling to get extended error information.

See Also
fcCANBufCfg

6.3.5 FCBCANGETMESSAGEBUFFER
This function reads a specific CAN message buffer configuration.

fcError fcbCANGetMessageBuffer(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferNumber,
TfcCANBufCfg* pCfg

))

Parameters
hFlexCard

[IN] Handle to a FlexCard.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 142 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

cC
[IN] CAN communication controller identifier.
bufferNumber
[IN] Identifier of the message buffer to be read.
Cfg
[OUT] The configuration parameters of the specified message buffer.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcoCANSetMessageBuffer, fcCANBufCfg

Example

// Get all configured transmit message buffers

std: :map<unsigned int, fcCANBufCfg > Buffers;

unsigned int bufferNr = 1; // The first valid buffer is 1
while (true)

fcCANBufCfg cfg;

// as long as no error occurs we try to get each buffer
fcError e = fcbCANGetMessageBuffer (m_hFlexCard,fcCCl,bufferNr,&cfg);
if (0 '= e) break;

// is this a tx buffer, then add it to our list
it (fcCANBufCfgTypeTx == cfg.Type)
Buffers[bufferNr] = cfg;

// next buffer number
bufferNr ++;

6.4 TRANSMIT

6.4.1 FCBCANTRANSMIT

This function writes the data bytes in a CAN communication controller transmit buffer of the FlexCard. The
transmitted data bytes depend on the meassage buffer configuration. The CAN message should normally
be transmitted as soon as possible. In case the transmission of any number of message buffers may be
requested at the same time, they are transmitted subsequently according to their priority (The message
object numbers are configurable from 1 up to 128, the lower is the message number, the higher is the
priority). If the transmit acknowledgment is activated, a CAN packet with a direction flag = 1 (Tx) is
generated as soon as the message has been transmitted. This function should only be called when the
FlexCard is in normal active state or when all message buffer configurations have been done.

The transmission may fail, if the buffer is already locked for transmission (fcGetErrorCode returns
MSG_BUF_LOCKED_FOR_TRANSMISSION). In that case retry Ilater or set the parameter
ignoreTxRgstLock to true.

fcError fcbCANTransmit(
fcHandle hFlexCard,
fcCC CC,
fcDword bufferNumber,
fcByte data[8],
bool transmitNewData,
bool i1gnoreTxRgstLock

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 143 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Parameters

hFlexCard
[IN] Handle to a FlexCard

cC
[IN] CAN communication controller identifier.

bufferNumber
[IN] The number of the message buffer used for the transmission.

Data
[IN] The data to be transmitted. The configured DLC in the message buffer determinates the
size of bytes which will be copied in the transmit buffer.

transmitNewData
[IN] Set to true to update the data of the message buffer. Set to false if the previous data shall
be sent again.

ignoreTxRgstLock
Set this flag to 1 if you want to force a reconfiguration of this buffer although the previous
message was not transmitted yet.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Example

fcByte data[8];
for (int i=0; i<8;i++)
data[1]=0xA;
// Transmit new data
fcError e = fcbCANTransmit(m_hFlexCard, fcCCl,bufferNumber,data,true,true);

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 144 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

7 ADDITIONAL CYCLONE II (SE) AND PMC (Il) API

Information

All enumerations, structures and functions in this chapter are initially supported for

FlexCard Cyclone Il (SE) devices by:
Q > FlexCard Windows API version S3V0-F.

» FlexCard Linux API version S2VO0-F.
» FlexCard Xenomai API version S4V2-F.

Information

This additional APl is also initially supported for:

» FlexCard PMC devices with only one FlexRay communication controller
and the FlexCard API version S4V2-F.

» FlexCard PMC Il devices with only one FlexRay communication controller
and the FlexCard API version S5V1-F.

7.1 SELF SYNCHRONIZATION

To also be able to test FlexRay nodes that don’t take part actively in the synchronization process of a
FlexRay network, the FlexCard provides the possibility to generate a second startup/synchronization frame.
Thus, the FlexCard synchronizes the FlexRay network independently. Self synchronization runs on the first
communication controller.

7.1.1 CONFIGURATION

7.1.1.1 FCBCONFIGUREMESSAGEBUFFERSELFSYNCHRONIZATION

This function configures up to 2 additional startup/synchronization message buffers. Configuring message
buffers is only allowed if the communication controller is in its configuration state, fcStateConfig. The
message buffer needs to be defined as fcMsgBufCfgTx. The SyncFramelndicator and
StartupFramelndicator need to be set, while CycleCounterFilter must be set to 0.

fcError fcbConfigureMessageBufferSelfSynchronization(
fcHandle hFlexCard,
fcDword* bufferid,
fcMsgBufCfg cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
bufferld

[OUT] Message buffer identifier. If the configuration was successful the message buffer

identifier is greater than 0. This identifier will be required to transmit the content of the buffer.
Cfg

[IN] Message buffer configuration parameters

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 145 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks
Only one additional start-up/synchronization frame can be defined. Therefore only 2 additional
message buffers can be configured. Before configuring the message buffers, it is necessary to set up
the global communication parameters (cluster parameters). Loading a new CHlI file will reset the
additional start-up/synchronization frames.

See Also
fcMsgBufCfg, fcMsgBufCfgTx, fcbReconfigureMessageBufferSelfSynchronization,
fcbGetCcMessageBufferSelfSynchronization, fcoResetCcMessageBuffersSelfSynchronization

Example

// The following code configures a self startup/synch transmit buffer
fcMsgBufCfg cfg;

memset(&cfg, 0, sizeof(FfcMsgBufCfg));

cfg.Type = fcMsgBufTx;
cfg.ChannelFilter = fcChannelA;
cfg.CycleCounterFilter = 0x0; // sync frames must appear iIn every cycle

cfg.Tx.Frameld = 3; // unused slotld of static segment
cfg.Tx.PayloadLength = 2;

cfg.Tx.PayloadLengthMax = 127;

cfg.Tx.PayloadPreamblelndicator = 0;

cfg.Tx.SyncFramelndicator = 1; // mandatory to be set to 1
cfg.Tx.StartupFramelndicator = 1; // mandatory to be set to 1
cfg.Tx.TxAcknowledgeEnable= 1;

cfg.Tx.TransmissionMode = fcMsgBufTxSingleShot;

unsigned int bufldx = 0O;
fcError e=fcbConfigureMessageBufferSelfSynchronization(hFlexCard,&bufldx,cfg);

7.1.1.2 FCBRECONFIGUREMESSAGEBUFFERSELFSYNCHRONIZATION

This function reconfigures the additional transmit message buffers for self start-up/synchronization. A
reconfiguration is only allowed for message buffers which are already configured and if the communication
controller is in its configuration state, fcStateConfig. The message buffer needs to be defined for a start-
up/synchronization transmit frame. Therefore it is mandatory to set the SyncFramelndicator and
StartupFramelndicator to 1 and the CycleCounterFilter to 0.

fcError fcbReconfigureMessageBufferSelfSynchronization(
fcHandle hFlexCard,
fcDword bufferlid,
fcMsgBufCfg cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
bufferld
[IN] The identifier of the message buffer which should be reconfigured.
Cfg

[IN] Message buffer configuration parameters.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcMsgBufCfq, fcMsgBufCfgTx, fcbConfigureMessageBufferSelfSynchronization,
fcbGetCcMessageBufferSelfSynchronization, fcoResetCcMessageBuffersSelfSynchronization

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 146 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

7.1.1.3 FCBREINITIALIZECCMESSAGEBUFFERSELFSYNCHRONIZATION

This function re-initializes the message buffer configuration of the self-startup synchronization
communication controller. After calling this function the communication controller does not send old payload
data. Re-initialization of message buffers is only allowed if the communication controller is in configuration
state.

fcError fcbReinitializeCcMessageBufferSelfSynchronization(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to a FlexCard

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information

7114 FCBGETCCMESSAGEBUFFERSELFSYNCHRONIZATION

This function reads a specific message buffer configuration of the additional message buffers for self
startup/synchronization.

fcError fcbGetCcMessageBufferSelfSynchronization(
fcHandle hFlexCard,
fcDword bufferlid,
fcMsgBufCfg* cfg

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
bufferld

[IN] The identifier of the additional start-up/sync message buffer to be read
cfg
[OUT] The configuration parameters of the specified message buffer.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcMsgBufCfq, fcMsgBufCfgTx, fcbConfigureMessageBufferSelfSynchronization,
fcbReconfigureMessageBufferSelfSynchronization, fcbResetCcMessageBuffersSelfSynchronization

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 147 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example

// Get all configured additional startup/synchronization transmit
// message buffers
std: :map<unsigned int, fcMsgBufCfg> Buffers;

// valid buffer indexes are only 1 and 2
for(unsigned int bufldx = 1;bufldx <=2; bufldx++)

fcMsgBufCfg cfg;

// as long no error occurs we try to get each buffer
fcError e=fcbGetCcMessageBufferSelfSynchronization(m_hFlexCard,bufldx,é&cfg);
if (0 = e)

continue;

//and add it to our list
Buffers[bufldx] = cfg;

}

7115 FCBRESETCCMESSAGEBUFFERSSELFSYNCHRONIZATION
This function resets the additional startup/synchronization message buffers.

TfcError fcbResetCcMessageBufferSelfSynchronization(
fcHandle hFlexCard
)

Parameters
hFlexCard

[IN] Handle to a FlexCard

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

7.1.2 TRANSMIT

7.1.21 FCBTRANSMITSELFSYNCHRONIZATION

This function writes a data frame into a self start-up/synchronization transmit buffer of the FlexCard. The
frame should normally be transmitted in the next cycle. If the transmit acknowledgment is activated, an
acknowledge packet is generated as soon as the frame has been transmitted. This function should only be
called when the FlexCard is in normal active state or when all message buffer configurations have been
done.

fcError fcbTransmitSelfSynchronization(
fcHandle hFlexCard,
fcDword bufferlid,
fcWord payload[],
fcByte payloadlLength

)

Parameters
hFlexCard

[IN] Handle to a FlexCard
bufferld

[IN] The id of the additional startup/synchronization message buffer used for the transmission
payload

The payload data to be transmitted
payloadLength

The size of the payload data (number of 2-byte words)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 148 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

The transmission may fail, if the buffer is currently in use (fcGetErrorCode returns MSG_BUFFER_BUSY

). In that case retry later.

Remarks

The payload data has to be organized as follows: if Data0 is the first byte to transmit and Data1 the
second byte to transmit, then the high byte (Bit 8 — 15) of payload[0] contains Data1, the low byte
(Bit0-7) of payload[0] contains Data0, etc.

Parameter payload

payload[0] (Word 0)

payload[1] (Word 1)

High byte

Low byte

High byte

Low byte

FlexRay payload segment

Data 1

Data 0

Data 3

Data 2

Example
fcWord payload[fcPayloadMaximum] ;

payload[0] = 0x0001; // Update your payload data

fcError e = fcbTransmitSelfSynchronization(m_hFlexCard,bufferldx,
payload,payloadLength);

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 149 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

8 ADDITIONAL PMC (II) cARD API

There are some functional hardware and software differences between FlexCard Cyclone Il (SE) and
FlexCard PMC () which demand additional functions or enumerations. The differences are listed in the

table below:

FlexCard Cyclone Il (SE)

FlexCard PMC

FlexCard PMC Il

1 CC for FlexRay
and
2 CCs for CAN

2 CCs for FlexRay

or
1 CC for FlexRay
and
2 CCs for CAN

Variable interface configurations
for FlexRay and CAN

max. 4 FlexRay CCs

or

max. 8 CAN CCs

with FlexTiny Il possible.

1IN trigger line, 1 OUT trigger line

2 trigger lines which can be defined

as IN or OUT

There are no bus terminations
available on the cards. External
bus termination needed.

FlexRay termination (90 Ohm)
and CAN termination (120 Ohm)
can be switched on by a software
access. Therefore the dip
switches for bus channel 3 and 4
must be configured correct.

FlexRay termination (90 Ohm)
and CAN termination (120 Ohm)
can be switched on by a software
access for all bus channels.

8.1 ENUMERATIONS

8.1.1 FCBUSCHANNEL

This enumeration defines the bus channels available on the card.

Typedef enum fcBusChannel

fcBusChannell
fcBusChannel?2
fcBusChannel3
fcBusChannel4
fcBusChannel5
fcBusChannel6
fcBusChannel?7
fcBusChannel8
} fcBusChannel;

IO T L I | I I I T |
O~NOUTAWNPE

Members
fcBusChannell

Identifies bus channel 1.

fcBusChannel 2

Identifies bus channel 2.

fcBusChannel3

Identifies bus channel 3.

fcBusChannel4

Identifies bus channel 4.

fcBusChannel5

Identifies bus channel 5.

fcBusChannel6

Identifies bus channel 6.

fcBusChannel7

Identifies bus channel 7.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 150 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcBusChannel8
Identifies bus channel 8.

See Also
fcbGetBusTermination, fcbSetBusTermination

8.2 FCBSETBUSTERMINATION
This function sets the bus termination for a bus channel.

fcError fcbSetBusTermination(
fcHandle hFlexCard,
fcBusChannel BusChannel,
fcBusType BusType,
bool bTermination

))

Parameters

hFlexCard
[IN] Handle to a FlexCard

BusChannel
[IN] The bus channel describes the channel at which the termination should be switched on or
off.

BusType
[IN] The bus type describes which bus protocol/transceiver is used for the channel. Different
bus protocols/transceivers demand different bus terminations.

bTermination
[IN] This parameter enables or disables the bus termination

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbGetBusTermination

Example

fcBusChannel busChannel = fcBusChannel3;
fcBusType busType = fcBusTypeFlexRay;
bool bTerm = true; // enable termination

// set FlexRay termination on bus channel 3
fcError e = fcbSetBusTermination(m_hFlexCard,busChannel ,busType,bTerm);

Remarks
The termination will not be switched off by the driver automatically if the application closes the device
or the driver will be unloaded. So the bus will not be disturbed by termination loss in case the user
application fails.

The bus channels for a FlexCard PMC (ll) are named channel1 to channel 8 as shown in the figures
below. Please note that the bus type (FlexRay or CAN) of channel 3 and 4 for a FlexCard PMC/PCI
need to be set by dip switches as described in the FlexCard PMC (ll) instructions for use.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 151 of 180

Figure 12: FlexCard PMC front panel

Channell Channel3 Channel5 Channel7 Trig2

Channel2 Channel4 Channelé Channel8 Trig]

Figure 13: FlexCard PMC Il front panel

8.3 FCBGETBUSTERMINATION
This function reads the bus termination configuration for a bus channel.

fcError fcbGetBusTermination(
fcHandle hFlexCard,
fcBusChannel BusChannel,
fcBusType BusType,
bool * pbTermination

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
BusChannel
[IN] The bus channel of the termination.
BusType

[IN] The bus type describes which bus termination type has be to be checked. Currently only
FlexRay bus terminations are available.

pbTermination
[OUT] This parameter value describes whether the bus termination is enabled or disabled.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbSetBusTermination

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 152 of 180

8.4 FCTRIGGERCONFIGURATIONEX

Please note that FlexCard PMC (1) trigger lines are not hard defined as IN or OUT trigger lines. Therefore
you always need to set a valid value for the parameter TriggerLineToConfigure Valid values are range
from 1 to 4 depending of the FlexCard device type. The trigger conditions of the FlexCard PMC (ll) are
defined in the enumeration fcTriggerConditionPMC. The conditions cannot be OR-ed. If you do it
nevertheless, none of the conditions are set and an error message is returned.

The conditions fcTriggerPMCOutOnErrorDetected, fcTriggerPMCOutOnCycleStart and
FfcTriggerPMCOutOnStartupCompleted demand to set the parameter TriggerGeneratingCC.

8.4.1.1 FCTRIGGERCONDITIONPMC
This enumeration defines the conditions available for a trigger configuration of a FlexCard PMC (ll). Please
note that these conditions can not be OR-ed.

Typedef enum fcTriggerConditionPMC

fcTriggerPMCNone = 0x00000000,
fcTriggerPMCIn = 0x00000100,
fcTriggerPMCOutOnPulse = 0x00001000,
fcTriggerPMCOutOnErrorDetected = 0x00010000,
fcTriggerPMCOutOnStartupCompleted = 0x00020000,
fcTriggerPMCOutOnCycleStart = 0x00100000,

} fcTriggerConditionPMC;

Members
fcTriggerPMCNone

This value can be used instead of zero.
fcTriggerPMCIn

A trigger packet is generated as soon as the set edge (falling/rising) is detected on the input

trigger line.
fcTriggerPMCOutOnPulse

A signal is generated on the output trigger line as soon as the condition is set to the driver.
fcTriggerPMCOutOnErrorDetected

A signal is generated on the output trigger line at a detected error.
fcTriggerPMCOutOnStartupCompleted

A signal is generated on the output trigger line at a completed start up.
fcTriggerPMCOutOnCycleStart
A signal is generated on the output trigger line at a cycle start.

See Also
fcbSetTrigger, fcTriggerConditionEx

Remarks
In the DebugAsynchron mode only the conditions fcTriggerPMCNone, fcTriggerPMCIn and
fcTriggerPMCOutOnPulse can be used.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 153 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

8.5 OBSOLETE

8.5.1 FCBSETCCINDEX (OBSOLETE)

Information

This function is obsolete. Please use the functions in chapter 5 and 6 instead and
specify the communication controller as parameter.

This function sets the FlexRay communication controller index.

communication controller that was set.

fcError fcbSetCclndex (
fcHandle hFlexCard,

fcCC CCIndex
)
Parameters
hFlexCard
[IN] Handle to a FlexCard
CCIndex

[IN] The FlexRay communication controller to be set.

Return values

Following functions refer to the

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 154 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks
The table below gives an overview of the functions which are CC specific.

CC specific functions CC global functions
fcbMonitoringStart (Obsolete) fcGetErrorCode
fcbMonitoringStop (Obsolete) fcGetErrorType
fcbGetCcState (Obsolete) fcGetErrorText
fcbSetTransceiverState (Obsolete) fcFreeMemory
fcbGetTransceiverState (Obsolete) fcbGetEnumFlexCards (Obsolete)
fcbSetCcRegister (Obsolete) fcbOpen
fcbGetCcRegister (Obsolete) fcbClose
fcbChiCcConfiguration (Obsolete) fcbSetTrigger
fcbCanDbCcConfiguration (Obsolete) fcbSetTimer
fcbConfigureMessageBuffer (Obsolete) fcbNotificationPacket
fcbReconfigureMessageBuffer fcbReceive
(Obsolete)
fcbGetCcMessageBuffer (Obsolete) fcbSetBusTermination
fcbResetCcMessageBuffer (Obsolete) fcbGetBusTermination
fcbFilter (Obsolete) fcbGetEnumFlexCardsV2 (Obsolete)
fcbSetEventHandle (Obsolete)
fcbTransmit (Obsolete)
fcbTransmitSymbol (Obsolete)
fcbSetCcTimerConfig (Obsolete)
fcbGetCcTimerConfig (Obsolete)
fcbCalculateMacrotickOffset (Obsolete)

8.5.2 FCBGETCCINDEX (OBSOLETE)

Information

This function is obsolete. Please use the functions in chapter 5 and 6 instead and
specify the communication controller as parameter.

This function reads the index of the set FlexRay communication controller. Communication controller
dependent functions refer to this communication controller only.

TfcError fcbGetCclndex (
fcHandle hFlexCard,
fcCC * pCClIndex

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
pCClndex

[OUT] The FlexRay communication controller which is currently set.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbSetCclndex (Obsolete), fcCC

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 155 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

9 ADDITIONAL LINUX API

There is an additional function available for the event handling in the FlexCard Linux driver.

9.1 INTEGRATION

For a detailed description of the installation process, please refer to the text file Read Me.ixt which is
included in the zip archive.

After a successful installation please check the correct device initialization with ‘cat /proc/flexcard’. All
installed devices must be shown with versions and irq info. Please compare the irq info with used irgs (cat
/proc/interrupts).

To use the additional Linux API, please include the header file fcBaselLinux.h in your application.

9.2 EVENT

The functions fcbSetEventHandle (Obsolete) and fcbSetEventHandleV2 register pthread conditions for
notifying the user application. The pthread conditions are not async-signal safe and can result in deadlocks.
Please use the function fcbSetEventHandleSemaphore to avoid deadlocks with the fcBase API.

9.2.1 FCBSETEVENTHANDLESEMAPHORE

This function registers an event handle (as semaphore) for a specific notification type. hEvent must be an
unnamed POSIX semaphore from type (sem_t).

TfcError fcbSetEventHandleSemaphore(
fcHandle hFlexCard,
fcCC CC,
fcHandle hEvent,
fcNotificationType type,

)

Parameters
hFlexCard
[IN] Handle to a FlexCard
cC

[IN] Communication controller index
hEvent

[IN] Event handle to be registered to signal when a new cycle starts or a timer interval has
elapsed depending on the given type.

Type
[IN] The notification type for which the event has to be registered.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 156 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcCC, fcNotificationType

Remarks

The table below gives an overview of the fcNotificationType which are CC specific and which is not.

CC specific fcNotificationType

CC global fcNotificationType

fcNotificationTypeFRCycleStarted
fcNotificationTypeFRWakeup
fcNotificationTypeFRCcTimer

fcNotificationTypeTimer

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 157 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

10 ADDITIONAL XENOMAI API

There is a difference in the event handling between the FlexCard Xenomai driver and the other drivers for
FlexCard Cyclone 1l (SE) and FlexCard PMC. Instead of fcbSetEventHandleV2 function, the
fcbWaitForEventV2 function should be used.

10.1 INTEGRATION

For a detailed description of the installation process, please refer to the text file Read Me.ixt which is
included in the zip archive.

After a successful installation please check the correct device initialisation with ‘cat /proc/xeno_flexcard’. All
installed devices must be shown with versions and irq info. Please compare the irq info with used irgs (cat
/procl/interrupts). Make sure no non real time device shares an irq with a FlexCard.

To use the additional Linux API, please include the header file fcBase XENOMAI.h in your application.

10.2 EVENT

10.2.1 FCBWAITFOREVENTV2

This function makes a safe real time I/O-Control that blocks the user process in kernel-space, until an event
of the given type occurs or the event does not appear within the specified amount of time. The driver’s
kernel interrupt service routine then unblocks and the program routine continues. You don’t need to set a
handle with fcbSetEventHandle or fcbSetEventHandleV2.

fcError fcbWaitForEventV2(
fcHandle hFlexCard,
fcCC CC,
fcNotificationType type,
fcDword nTimeout

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
cC
[IN] Communication controller index
type

[IN] The notification type for which event has to be waited for.
nTimeout
[IN] The maximum amount of time to wait for the event.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcCC, fcNotificationType

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 158 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Remarks
The table below gives an overview of the fcNotificationType which are CC specific and which is not.
CC specific fcNotificationType CC global fcNotificationType
fcNotificationTypeFRCycleStarted fcNotificationTypeTimer
fcNotificationTypeFRWakeup
fcNotificationTypeFRCcTimer

10.3 OBSOLETE

10.3.1 FCBWAITFOREVENT (OBSOLETE)

Information
O This function is obsolete. Please use fcbWaitForEventV2 instead.

This function makes a safe real time I/O-Control that blocks the user process in kernel-space, until an event
of the given type occurs or the event does not appear within the specified amount of time. The driver’s
kernel interrupt service routine then unblocks and the program routine continues. You don’t need to set a
handle with fcbSetEventHandle.

fcError fcbWaitForEvent(
fcHandle hFlexCard,
fcNotificationType hEvent,
fcDword nTimeout

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
hEvent
[IN] The notification type for which event has to be waited for.
nTimeout

[IN] The maximum amount of time to wait for the event.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType

Remarks
The table below gives an overview of the fcNotificationType which are CC specific and which is not.
To use the CC specific fcNotificationType, the CC index has to be set.

CC specific fcNotificationType CC global fcNotificationType
fcNotificationTypeCycleStarted fcNotificationTypeTimer
fcNotificationTypeWakeup

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 159 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

11 ADDITIONAL VXWORKS API

The VxWorks driver provides additional functionality for the FlexCard PMC. Please note that there are also
some fcBase API functions and type definitions which were changed or are not supported by the VxWorks
driver.

To use the driver in a user application, the header files fcPmcDrv.h, fcBaseTypesVxWorks.h and
fcbBaseVxWorks.h have to be included in that order.

11.1 INTEGRATION

For a detailed description of the installation process, please refer to the text file Read Me.ixt which is
included in the zip archive.

11.1.1 FCDRVINIT

This function initializes the FlexCard PMC VxWorks driver.

STATUS fcDrvinit()

Return values
If the function succeeds, the return value is (OK). If the value is (ERROR) the driver couldn’t be
initialized.

See Also
fcDrvExit

11.1.2 FCDRVEXIT
This function finalizes the FlexCard PMC VxWorks driver.
STATUS fcDrvExit()
Return values
If the function succeeds, the return value is (OK). If the value is (ERROR) the driver couldn’t be

finalized.

See Also
fcDrvinit

11.2 RESTRICTIONS / CHANGES

11.2.1 NOT SUPPORTED TYPE DEFINITIONS

The VxWorks driver doesn’t support the following type definitions:

» fcFreeMemory

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 160 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

> fcTriggerCondition (Obsolete)

» fcTriggerType (Obsolete)

» fcTriggerMode (Obsolete)

» fcTriggerCfgHardware (Obsolete)
> fcTriggerCfgSoftware (Obsolete)
» fcTriggerCfg (Obsolete)

» fcTriggerinfoPacket (Obsolete)

» fcTriggerConditionEx

11.2.2 CHANGED TYPE DEFINITIONS

11.2.2.1 FCVERSION
This structure provides version information about the FlexCard hardware and software components.

Typedef struct fcVersion
{

fcVersionNumber DeviceDriver;
fcVersionNumber Firmware;
fcVersionNumber Hardware;
fcCCType CCType;
fcVersionNumber CC;
fcVersionNumber BusGuardian;
fcVersionNumber Protocol ;
fcDword Serial;
fcFlexCardDeviceld Deviceld;
fcDword Reserved[3];
} fcVersion;
Members
DeviceDriver
Device driver version
Firmware
Firmware (gateway software) version
Hardware
FlexCard hardware version
CCType
Communication controller type
CcC
Communication controller module version
BusGuardian
Bus Guardian version
Protocol
FlexRay Protocol version
Serial
FlexCard serial number. A zero value indicates a non-valid FlexCard serial number.
Deviceld

Device identifier to detect the FlexCard type (FlexCard Cyclone Il, FlexCard Cyclone Il SE or

FlexCard PMC)
Reserved[3]

Reserved for internal purpose

See Also
fcinfo, fcbGetEnumFlexCards (Obsolete), fcFlexCardDeviceld

11.2.2.2 FCTRIGGERCONFIGURATIONEX
This structure is used for the configuration of a trigger. By using the parameter Condition several
triggers can be enabled. The trigger conditions of the FlexCard PMC are defined in the enumeration

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 161 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcTriggerConditionPMC. The conditions cannot be combined (OR-ed). If it is done, none of the
conditions will be set and an error message will be returned.

The conditions fcTriggerPMCOutOnErrorDetected, fcTriggerPMCOutOnCycleStart and
fcTriggerPMCOutOnStartupCompleted demand to set the parameter TriggerGeneratingCC. Please
note the FlexCard trigger lines are not hard defined as IN or OUT trigger lines. Therefore a valid value has
always to be set for the parameter TriggerLineToConfigure.

Typedef struct fcTriggerConfigurationEx

fcDword Condition;
fcDword onEdge;
fcDword TriggerLineToConfigure;
fcCC TriggerGeneratingCC;
fcDword Reserved[4]:

} fcTriggerConfigurationEx;

Members

Condition
This parameter can either be set to 0 (fcTriggerPMCNone) to reset the trigger or to any
condition available in fcTriggerConditionPMC.

onEdge
This parameter has to be set when the condition fcTriggerPMClIn is chosen. Valid values are 0
= falling edge and 1 = rising edge.

TriggerLineToConfigure
This parameter sets the trigger line which should be configured. Valid values range from 1 to 2.

TriggerGeneratingCC
This parameter has to be set when a CC dependent trigger condition was set. Valid values

range from fcCC1 to fcCC2.
Reserved[4]

Reserved Dwords for possible later use.

See Also
fcbSetTrigger, fcTriggerConditionPMC

11.2.2.3 FCNOTIFICATIONTYPE

This enumeration defines different notification types. These types are used in the functions
fcbSetEventHandle and fcbSetNotificationTypeCount to specify on which kind of event the application has
to be notified.

Typedef enum fcNotificationType
{

fcNotificationTypeCycleStarted
fcNotificationTypeTimer
fcNotificationTypeWakeup
fcNotificationTypeRxCount
fcNotificationTypeTxCount
fcNotificationTypelnfoCount
fcNotificationTypeErrorCount
fcNotificationTypeStatusCount
fcNotificationTypeTriggerCount
fcNotificationTypeNMVCount
fcNotificationTypeNotificationCount
fcNotificationTypeCcTimer

} fcNotificationType;

L 1 1 1 1 e 1 A I { |
RPRPOO~NOODRWNE

H
NER O v« « v« uw uw u u u

Members
fcNotificationTypeCycleStarted

Used to notify that a new cycle has started and that probably new data has been received.
fcNotificationTypeTimer

Used to notify that the timer interval has elapsed. This notification requires the internal timer of
the FlexCard to be enabled (See fcbSetTimer).

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 162 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcNotificationTypeWakeup
Used to notify that one of the transceivers has received a wakeup event (only if one of the

transceivers was in sleep mode).
fcNotificationTypeRxCount
Used to notify that the configured amount of FlexRay frames has been received. This
notification can be configured (See fcbSetNotificationTypeCount).
fcNotificationTypeTxCount
Used to notify that the configured amount of TxAcknowledge frames has been received. This

notification can be configured (See fcbSetNotificationTypeCount).
fcNotificationTypelnfoCount

Used to notify that the configured amount of info frames has been received. This notification

can be configured (See fcbSetNotificationTypeCount).
fcNotificationTypeErrorCount

Used to notify that the configured amount of error frames has been received. This notification

can be configured (See fcbSetNotificationTypeCount).

fcNotificationTypeStatusCount
Used to notify that the configured amount of status frames has been received. This notification
can be configured (See fcbSetNotificationTypeCount).

fcNotificationTypeTriggerCount
Used to notify that the configured amount of trigger frames has been received. This notification
can be configured (See fcbSetNotificationTypeCount).

fcNotificationTypeNMVCount

Used to notify that the configured amount of network management vector frames has been

received. This notification can be configured (See fcbSetNotificationTypeCount).
fcNotificationTypeNotificationCount

Used to notify that the configured amount of notification frames has been received. This

notification can be configured (See fcbSetNotificationTypeCount).
fcNotificationTypeCcTimer

Used to notify that the configured cc timer macrotick offset has elapsed.

See Also

fcbMonitoringStart, fcbSetEventHandle, fcbSetNotificationTypeCount, fcbSetTimer,
fcbSetCcTimerConfig (Obsolete)

11.2.2.4 FCTRIGGEREXINFOPACKET
This structure provides information about a trigger packet.

Typedef struct fcTriggerExInfoPacket
{

fcDword Condition;
fcDword TimeStamp;
fcDword SequenceCount;
fcDword Edge;

fcDword TriggerLine;
fcDword Reserved[4];

} fcTriggerExInfoPacket;

Members

Condition
The fulfilled condition which has caused the trigger packet generation.
TimeStamp
The FlexCard time stamp (1 us resolution). Indicates the time at which the packet was
generated.
SequenceCount
Sequence count for each signal.
Edge
The edge on which the trigger was signalled.
TriggerLine
The trigger line which detected a trigger signal.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 163 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Reserved[4]
Reserved for future use.

See Also
fcPacket

11.2.2.5 FCPACKETTYPE
This enumeration contains the different packet types.

Typedef enum fcPacketType

fcPacketTypelnfo
fcPacketTypeFlexRayFrame
fcPacketTypeError
fcPacketTypeStatus
fcPacketTypeTxAcknowledge
fcPacketTypeNMVector
fcPacketTypeNotification
fcPacketTypeTriggerEx

} fcPacketType;

I T L I | I I I T |
OCO~NOPAWNE

Members
fcPacketTypelnfo

Frame is an info packet.
fcPacketTypeFlexRayFrame

Frame is a FlexRay frame.
fcPacketTypeError

Frame is an error packet.
fcPacketTypeStatus

Frame is a status packet.
fcPacketTypeTxAcknowledge

Frame is a transmit acknowledge packet.
fcPacketTypeNMVector

Frame is a network management vector packet.
fcPacketTypeNotification

Frame is a notification packet.
fcPacketTypeTriggerEx

Frame is a trigger packet.

See Also

fcPacket, fcInfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, fcStatusPacket,

fcNMVectorPacket, fcNotificationPacket, fcTriggerExInfoPacket

11.2.2.6 FCPACKET
This structure provides information about a packet.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 164 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Typedef struct fcPacket

fcPacketType Type;

union

{
fcFlexRayFrame*
fclnfoPacket™*
fcErrorPacket*
fcStatusPacket™

FlexRayFrame;
InfoPacket;
ErrorPacket;
StatusPacket;

fcTriggerExInfoPacket* TriggerExPacket;
fcTxAcknowledgePacket* TxAcknowledgePacket;

fcNMVectorPacket*

NMVectorPacket;

fcNotificationPacket* NotificationPacket;

féPacket* pNextPacket;

} fcPacket;

Members

Type
Type of packet.
FlexRayFrame

Pointer to the packet data.

InfoPacket

Pointer to the packet data.

ErrorPacket

Pointer to the packet data.

StatusPacket

Pointer to the packet data.

TriggerExPacket

Pointer to the packet data.

TxAcknowledgePacket

Pointer to the packet data.

NMVectorPacket

Pointer to the packet data.

NotificationPacket

Pointer to the packet data.

pNextPacket

Pointer to the next packet.

See Also
fcPacketType, fclnfoPacket, fcFlexRayFrame, fcTxAcknowledgePacket, fcErrorPacket, fcStatusPacket,

The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.
The content depends on the type of packet.

If the pointer is NULL, there are no more packets available.

fcNMVectorPacket, fcNotificationPacket, fcTriggerExInfoPacket

11.2.2.7 FCSTATE

This enumeration defines the possible communication controller POC states (FlexRay Protocol
Specification: vPOC!State). For more details about communication controller POC states, please refer to

[3].

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 165 of 180

Typedef enum fcState

fcStateUnknown = 0,
fcStateDefaultConfig,
fcStateReady,
fcStateNormalActive,
fcStateNormalPassive,
fcStateHalt,
fcStateMonitorMode,
fcStateConfig,

fcStateWakeupStandby,
fcStateWakeupListen,
fcStateWakeupSend,
fcStateWakeupDetect,

fcStateStartupPrepare,
fcStateColdstartListen,
fcStateColdstartCollisionResolution,
fcStateColdstartConsistencyCheck,
fcStateColdstartGap,
fcStateColdstartJoin,
fcStatelntegrationColdstartCheck,
fcStatelntegrationListen,
fcStatelntegrationConsistencyCheck,
fcStatelnitializeSchedule,
fcStateAbortStartup,
fcStateStartupSuccess,

}fcState;

Members

fcStateUnknown

Communication controller state is not known.
fcStateDefaultConfig

Communication controller is in DEFAULT_CONFIG state.
fcStateReady

Communication controller is in READY state.
fcStateNormalActive

Communication controller is in NORMAL_ACTIVE state.
fcStateNormalPassive

Communication controller is in NORMAL_PASSIVE state.

fcStateHalt

Communication controller is in HALT state.
fcStateMonitorMode

Communication controller is in MONITORMODE state
fcStateConfig

Communication controller is in CONFIG state.
fcStateWakeupStandby

Communication controller is in WAKEUP_STANDBY state.
fcStateWakeupListen

Communication controller is in WAKEUP_LISTEN state.
fcStateWakeupSend

Communication controller is in WAKEUP_SEND state.
fcStateWakeupDetect

Communication controller is in WAKEUP_DETECT state.
fcStateStartupPrepare

Communication controller is in STARTUP_PREPARE state.
fcStateColdstartListen

Communication controller is in COLDSTART_LISTEN state.
fcStateColdstartCollisionResolution

Communication controller is in COLDSTART_COLLISION_RESOLUTION state.
fcStateColdstartConsistencyCheck

Communication controller is in COLDSTART_CONSISTENCY_CHECK state.

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 166 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcStateColdstartGap

Communication controller is in COLDSTART_GAP state.
fcStateColdstartJoin

Communication controller is in COLDSTART_JOIN state.
fcStatelntegrationColdstartCheck

Communication controller is in INTEGRATION_COLDSTART_CHECK state.
fcStatelntegrationListen

Communication controller is in INTEGRATION_LISTEN state.
fcStatelntegrationConsistencyCheck

Communication controller is in INTEGRATION_CONSISTENCY_CHECK state.

fcStatelnitializeSchedule

Communication controller is in INITIALIZE_SCHEDULE state.
fcStateAbortStartup

Communication controller is in ABORT_STARTUP state.
fcStateStartupSuccess

Communication controller is in STARTUP_SUCCESS state.

See Also

fcbGetCcState, fcbMonitoringStart

11.2.3 NOT SUPPORTED FUNCTIONS

The VxWorks driver doesn’t support the following functions:

» fcGetErrorText

» fcFreeMemory

» fcbCanDbCcConfiguration (Obsolete)
» fcbTrigger (Obsolete)

» fcbGetEnumFlexCardsV2 (Obsolete)

11.2.4 CHANGED FUNCTIONS

11.2.4.1 FCBMONITORINGSTART
This function is used to start the monitoring of a FlexRay bus. Once called, the function changes the
communication controller state from configuration state to normal active state (if the cluster integration
succeeds). The current communication controller state can be read using the function fcbGetCcState
(Obsolete). If the FlexCard is synchronized with the cluster the function fcbGetCcState (Obsolete) will
return the value fcStateNormalActive. Please note, that if an event for the event counter (for the
several packet type) is registered with fcbSetEventHandle, this function activates the corresponding
hardware interrupts and the application is notified if this event occurred.

fcError fcbMonitoringStart(

fcHandle hFlexCard,
fcMonitoringModes mode,
bool restartTimestamps,
bool enableCycleStartEvents
bool enableColdstart,

bool enableWakeup

)
Parameters
hFlexCard
[IN] Handle to a FlexCard.
Mode

[IN] The monitoring mode. See fcMonitoringModes for details.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 167 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

restartTimestamps
[IN] Set this parameter to false to restart the measurement without resetting the FlexCard
timestamp. Set it to true to start the measurement from the beginning. The timestamps have
micro second resolution.

enableCycleStartEvents
[IN] Set this parameter to true to enable the cycle start events in order that at the beginning of
every cycle the event fcNotificationTypeCycleStarted is signalled.

enableColdstart
[IN] Set this parameter to true to allow the FlexCard to initialize the cluster communication,
otherwise the coldstart inhibit mode is active. This feature can not be used in the monitoring
modes fcMonitoringDebug and fcMonitoringDebugAsynchron.

enableWakeup
[IN] Set this parameter to true to transmit a wakeup pattern to the configured wakeup channel
(FlexRay Protocol Specification: pWakeupChannel). A cluster wakeup must precede the
communication start up to ensure that all nodes in a cluster are awake. The minimum
requirement for a cluster wakeup is that all bus drivers are supplied with power. This feature
can not be used in the monitoring modes fcMonitoringDebug and
fcMonitoringDebugAsynchron.

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Remarks

After the monitoring has started, the user should check if the integration in the cluster was
successful: fcbGetCcState (Obsolete) should return the state fcStateNormalActive.

Information

After the monitoring has successfully started, the receive process has to be
started as soon as possible to avoid an overflow (error packet
fcErrFlexcardOverflow is received). Once an overflow occurred, no more packets
can be received. The monitoring has to be stopped and started again.

See Also

fcbMonitoringStop, fcbGetCcState (Obsolete), fcMonitoringModes, fcbSetEventHandle

11.24.2 FCBMONITORINGSTOP

This function stops the FlexRay bus measurement. The communication controller is set back in its
configuration state.

Please note, that if an event for the event counter (for the several packet types) is registered with
fcbSetEventHandle, this function deactivates the corresponding hardware interrupts and the application is

not notified if this event occurred.

TfcError fcbMonitoringStop(

D)

fcHandle hFlexCard

Parameters

hFlexCard
[IN] Handle to FlexCard

Return values

If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 168 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcbMonitoringStart

11.24.3 FCBSETEVENTHANDLE

This function registers an event handle for a specific notification type. The event handling is based on
binary semaphores.

fcError fcbSetEventHandle(
fcHandle hFlexCard,
fcHandle hEvent,
fcNotificationType type

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
hEvent

[IN] Event handle to be registered. This value depends on the given type. Set this parameter
to NULL to deregister the event handle for the given type.

Type
[IN] The notification type for which the event has to be registered.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType

Example
See Example in fcbSetNotificationTypeCount

11.2.4.4 FCBRECEIVE

This function reads all available packets from the FlexCard memory into a memory block allocated by the
fcBase API during the initialization phase in fcbOpen. The frames are stored into a linked list. The memory
allocated by this function is released by the fcbClose function. Please note, that every function call from
fcbReceive overwrites the old frames in the memory block. The size of the memory block can be configured
with fcbSetReceiveMemorySize.

fcError fcbReceive(
fcHandle hFlexCard,
fcPacket** pPacket

);
Parameters
hFlexCard
[IN] Handle to a FlexCard
pPacket

[OUT] Address of the fcPacket object pointer. The memory for this structure and its content is
allocated by the fcBase API. Packets are available if the return code is 0 and pPacket is not a
null pointer.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 169 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Example

fcPacket* pPackets = NULL;
fcError e = fcbReceive(m_hFlexCard, &pPackets);

if (0 == e)

fcPacket* pCurrentPacket = pPacket;
while (NULL !'= pCurrentPacket)

{

switch (pCurrentPacket->Type)

case fcPacketTypelnfo:

{

}

case

{

case

case

case

case

case

fclnfoPacket* pFrame = pCurrentPacket->InfoPacket;

printf(“[fcPacketTypelnfo] CC: %d TimeStamp: %f Cycle: %d”,
pFrame->CC + 1,
(float) pFrame->TimeStamp * 0.000001,
pFrame->CurrentCycle);

printf(“ Rate Correction: %d”, pFrame->RateCorrection);

printf(“ Offset Correction: %d”, pFrame->0ffsetCorrection);

printf(*“ Clock Correction Failed Counter: %d”,
pFrame->ClockCorrectionFailedCounter);

printf(“ Passive to Active Count: %d”,
pFrame->PassiveToActiveCount);

printf(“\n”);

break;

fcPacketTypeFlexRayFrame:

fcFlexRayFrame* pFrame = pCurrentPacket->FlexRayFrame;
printf(“[fcPacketTypeFlexRayFrame] CC: %d TimeStamp: %Ff
“Cycle: %d 1d: %d Channel: %d PayloadLength: %d”,
pFrame->CC + 1,
(float) pFrame->TimeStamp * 0.000001,
pFrame->CycleCount,
pFrame->ID,
pFrame->Channel,
pFrame->PayloadLength) ;

for (int 1 = 0; 1 < pFrame->PayloadLength; i++)

{
printf(“ %04X”, pFrame->pData[i]);

it (pFrame->PP) printf(*“ PP”);
it (pFrame->NF) printf(“ NF”);
if (pFrame->SYNC) printf(*“ SYNC”);
if (pFrame->STARTUP) printf(*“ STARTUP”);
ifT (pFrame->SyntaxError) printf(* SyntaxError™);
it (pFrame->ContentError) printf(“ ContentError™);
if (pFrame->ValidFrame) printf(“ ValidFrame™);
if (pFrame->SlotBoundaryViolation)

printf(*“ SlotBoundaryViolation™);
printf(“\n”);
break;

fcPacketTypeError:
printf(“[fcPacketTypeError]\n’);
break;

fcPacketTypeStatus:
printf(“[fcPacketTypeStatus]\n™);
break;

fcPacketTypeTriggerEx:
printf(“[fcPacketTypeTriggerEx]\n’);
break;

fcPacketTypeTxAcknowledge:

printf(“[fcPacketTypeTxAcknowledge]\n’);
break;

fcPacketTypeNMVector:

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 170 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

printf(“[fcPacketTypeNMVector]\n”);
break;

}
pCurrentPacket = pCurrentPacket->pNextPacket;

11.3 CONFIGURATION

11.3.1 FCBSETPACKETGENERATION

This function allows to dis- or enable the generation of a packet type. It is designed to reduce the amount of
packets, which will be generated by the FlexCard.

TfcError fcbSetPacketGeneration(
fcHandle hFlexCard,
fcPacketType type,
bool bEnable

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
type
[IN] The packet type.
bEnable

[IN] Set to true to enable the generation and to false to disable it.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcbReceive, fcPacketType

11.3.2 FCBSETRECEIVEMEMORYSIZE

This function allows configuring the size of memory, where fcbReceive will store all received frames. This
function has to be called before you open a connection to the FlexCard. During the initialisation phase (in
fcbOpen) the amount of memory is dynamically allocated. Closing the connection (by fcbClose) releases
the memory automatically.

fcError fcbSetReceiveMemorySize(
fcDword size;
)

Parameters
size
[IN] The size of memory. The default value is 128 kB and it is recommended to set size in a
range from 20 kB to 70 MB. Other values than the recommended values are ignored and size
will be set to default.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 171 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

See Also
fcbReceive, fcbOpen, fcbClose

11.4 EVENT

11.4.1 FCBSETNOTIFICATIONTYPECOUNT

This function allows configuring the event counter for the several packet types. Count represents the
amount of packets (of a dedicated packet type) which need to be received to initiate an event of the chosen
notification packet type.

TfcError fcbSetNotificationTypeCount(
fcHandle hFlexCard,
fcNotificationType type,
fcByte count

)
Parameters
hFlexCard
[IN] Handle to a FlexCard
type

[IN] The notification type for which the configuration has to be used. The notification types
fcNotificationTypeCycleStarted, fcNotificationTypeWakeup,
fcNotificationTypeTimer and fcNotiFficationTypeCcTimer
are not supported.

Count
[IN] The value represents the amount of packets (of a dedicated packet type) which need to be
received to initiate an event of the chosen notification packet type. Valid values range from 1 to
255.

Return values
If the function succeeds, the return value is 0. If the value is <> 0, use the functions described in the
section Error Handling to get extended error information.

See Also
fcNotificationType, fcbSetEventHandle, fcbMonitoringStart, fcbMonitoringStop

Example

fcPacket* pPackets = NULL;

SEM_ID seminfoCount = NULL;

semInfoCount = semBCreate(SEM_Q_FIFO, SEM_EMPTY);
assert (NULL !'= semlnfoCount);

fcError e = fcbSetEventHandle(m_hFlexCard, (void *) semlnfoCount, \
fcNotificationTypelnfoCount);

if (0 == ¢e)

{)
// Configure the Info packet event counter
fcbSetNotificationTypeCount(m_hFlexCard, fcNotificationTypelnfoCount, 2);

// Start monitoring and wait for the event forever
fcbMonitoringStart(m_hFlexCard, fcMonitoringNormal, 1, 0, 0, 0);
semTake(semInfoCount, WAIT_FOREVER);

// Min. 2 Info packets can be received now
e = fcbReceive(m_hFlexCard, &pPackets);

if (0 == ¢e)

{ /7* Process packets */ }

-

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 172 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

12 POWER MANAGEMENT

System Standby Failed) il

The device driver For the 'FlexCard PMC Card' device is preventing the machine From entering standby. Please clase all applications and by again, IF
the problem persists, vou may need to update this driver.

Figure 14: System Standby Failed message box

On Windows 2000 and Windows XP stand-by and hibernation is prohibited by the FlexCard in order to
provide a continuous monitoring of a bus and not to disturb a running network. On Windows Vista however,
drivers are not allowed to prohibit power saving functions so that energy costs can be reduced and battery
duration is improved.

When the PC enters standby or hibernation, the current measurement is stopped automatically. After
standby the handle to the driver is not valid anymore. On resume, application developers should call
fcbClose, fcbGetEnumFlexCardsV3, fcbOpen to initialize the FlexCard again.

Applications have the possibility to react to standby or resume with the Windows message
WM_POWERBROADCAST containing the events PBT_APMSUSPEND and PBT_APMRESUMESUSPEND.

Application developers may inform the user under Windows Vista that standby and hibernation stops the
current monitoring. This is possible in the user manual or with a message window at the first start of the
application. Users have the possibility to deactivate the automatic standby in the control panel.

Application developers may consider deactivating idle recognition with the command
SetThreadExecutionState() to prohibit automatic stand-by. However, manual switching to stand-by can not
be prevented under Windows Vista.

Information

Please note: Power Management is only supported under Microsoft Windows
operating systems. Under Linux, please deactivate kernel power management
options to avoid undefined behaviour with the FlexCard Linux and Xenomai driver.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 173 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

13 TRACING

13.1 OVERVIEW

The tracing module allows the user to get more information about the fcBase DLL (Windows only) activity
(e.g. in the case of an error).

The tracing consists of three parts:
e The tracing module inside the fcBase dynamic link library. This module will send the trace
messages to a debugger for displaying (using the windows function OutputDebugString).
e The tracing control application to choose the tracing level.
e A debug output viewer (e.g. DebugView from Syslinternals) to view the trace messages. If you
are debugging your own application, the messages appear normally in the debug output
window of your IDE.

The followings tracing levels are available:
e Debug: all trace messages will be shown.
e Info: info and warning messages will be shown.
e Warn: only warning messages will be shown.
e Error: only error messages will be shown.
e Fatal: only fatal error message will be shown.
¢ None: tracing messages will not be generated.

To use the tracing the following steps are required:

Step 1 £ fcTracerControl

Start the tracing control application

(fcTracerControl.exe) Select tracing level

IN:::ne j

Step 2 S e
Start the debug output viewer (DebugView.exe) fﬂﬂ |j,.:3 - A |DL$ & N

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 174 of 180

http://www.sysinternals.com/utilities/debugview.html�

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Step 3

SWE D= [(W/ EDT| 9F | M

Start your application. In our case we use the demo _
. . .) [Tine | Detug Erint
application (fcDemo.exe). Now, the tracing level
should be selectable. T —
o Sove-103 ‘Seinct tracng level
[- 00145 [TEr— -
Firrweare SIV0-67

Hardware IV

Commarication Controles Dozt C-Ray
6 Ve 1100
Fledlay Protocel Verson DLO.0
e el

I | = |

Step 4 #_ fcTracerControl

Activate the tracing by choosing a tracing level _
different of None (e.g. Debug). Use your application Select tracing level

and view the trace messages. -

13.2 LIMITATION

The tracing module inside the fcBase DLL will update the new tracing level only by calling the following
functions:

e fcbGetEnumFlexCards (Obsolete)
e fcbGetEnumFlexCardsV2 (Obsolete)
e fcbGetEnumFlexCardsV3

e fcbOpen
e fcbClose

That means a level modification by the tracing control application will only be passed to the tracing module
inside the fcBase DLL if one of the above functions is called.

This limitation ensures that performance critical functions such as fcbReceive or fcbTransmit are not
delayed.

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 175 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

14 APPENDIX

14.1 BIBLIOGRAPHY

(1]
(2]
3]
(4]

FlexCard Cyclone Il (SE) Instruction for Use (3-0009-0T01-D01)
MSDN: Dynamic-Link Library Search Order

FlexRay Protocol Specification V2.1 Rev. A

FlexRay Electrical Physical Layer Specification V2.1 Rev. A

14.2 ABBREVIATIONS

Abbreviations Definition
API Programming Interface
DLL Dynamic Link Library
IDE Integrated Development Environment
PDF Portable Document Format
SYS System device driver
MFC Microsoft Foundation Class
CcC Communication controller
PMC PCl Mezzazine Card
LKM Loadable kernel module (for Linux OS)
LIB Library (shared object file)

14.3 GLOSSARY

Term Description
INF File A text-based file containing information required by the system to install a
device’s software components
MFC C++ Application framework for programming in Microsoft Windows
Qt C++ Application framework for programming platform independent applications
Cluster Network topology
CHI File that configures a communication controller
CANdb File that configures a communication controller

14.4 Li1ST OF FIGURES

Figure 1: Overview of a typical FlexCard system with hardware and software................cccccooeiiiiiiienceen, 13
FIGUPE 2: FCBASE AP GIOUPS ...ttt ettt ettt e ettt e e e e e e ettt tba e e e e e e e e eetba e e e e e e e eennbann e eens 14
Figure 3: FlexCard direCtory SITUCIUIEcoooiiiiii et 15
Figure 4: Integration under Visual StUdio 6.0iiiiiiiiiiiiii e e e 17
Figure 5: Integration under Visual Studio .NET 2003 ... e a e 17
Figure 6: Using the variable FLEXCARD_INC under Visual Studio .NET 2003 (Compiler)cccccuuunnnnnn. 18
Figure 7: Using the variable FLEXCARD_INC under Visual Studio .NET 2003 (LinKer)........cccooeeviiiiiinnnnnnn. 19
Figure 8: Typical FlexRay function WOIrKIIOWcooiiiiiiiiiii e 20
Figure 9: Overview fcbMsgBUFCTG SITUCTUIE...........iiiii e 50
Figure 10: Overview fcbTriggerCfg StrUCLUIEu. i e 102

Copyright 2009 Eberspacher Electronics GmbH & Co. KG Page 176 of 180

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/dynamic-link_library_search_order.asp�

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Figure 11: Typical CAN function workflow
Figure 12: FlexCard PMC front panel
Figure 13: FlexCard PMC Il front panel
Figure 14: System Standby Failed message box

14.5 [INDEX

Byte order 94, 130, 150
Constants
fcPayloadMaximum 50
Enumerations
fcBusType 35
fcCANErrorType 83
fcCC 36
fcCCType 38
fcChannel 35
fcCyclePos 51
fcErrorCode 31
fcErrorPacketFlag 81
fcErrorType 31
fcFlexCardDeviceld 39
fcMemoryType 33
fcMonitoringModes 39
fcMsgBufTxMode 51
fcMsgBufType 50
fcPacketType 80
fcState 36
fcStatusPacketFlag 82
fcSymbolType 38
fcTransceiverState 37
fcTriggerCondition (Obsolete) 105
fcTriggerConditionEx 62
fcTriggerConditionPMC 154
fcTriggerMode 106
fcTriggerType (Obsolete) 106
fcWakeupStatus 37
Enumerations CAN
fcCANBufCfgRxAllCondition 137
fcCANBufCfgType 136
fcCANCcState 133
fcCANMonitoringMode 133
Enumerations FlexRay
fcFRBaudRate 112
Enumerations PMC (1)
fcBusChannel 151
Error codes 31
Example 21
fcNotificationType 64
fcNotifyType 64
Functions
fcbCalculateMacrotickOffset 101
fcbCanDbCcConfiguration (Obsolete) 97
fcbCheckVersion 45
fcbChiCcConfiguration (Obsolete) 96
fcbClose 46

fcbConfigureMessageBuffer (Obsolete) 97
fcbFilter (Obsolete) 100
fcbGetCcMessageBuffer (Obsolete) 99
fcbGetCcRegister (Obsolete) 95
fcbGetCcState (Obsolete) 91
fcbGetCcTimerConfig (Obsolete) 101
fcbGetCurrentTimeStamp 59
fcbGetEnumFlexCards (Obsolete) 88
fcbGetEnumFlexCardsV2 (Obsolete) 88
fcbGetEnumFlexCardsV3 44
fcbGetinfoFlexCard 47
fcbGetNumberCcs 58
fcbGetTransceiverState (Obsolete) 92
fcbGetUserDefinedCardld 48
fcbMonitoringStart (Obsolete) 89
fcbMonitoringStop (Obsolete) 90
fcbNotificationPacket 67

fcbOpen 46

fcbReceive 84

fcbReconfigureMessageBuffer (Obsolete) 98

fcbReinitializeCcMessageBuffer 57
fcbResetCcMessageBuffer (Obsolete) 99
fcbResetTimestamp 59
fcbSetCcRegister (Obsolete) 94
fcbSetCcTimerConfig (Obsolete) 100
fcbSetContinueOnPacketOverflow 58
fcbSetEventHandle (Obsolete) 93
fcbSetTimer 66
fcbSetTransceiverState (Obsolete) 91
fcbSetTrigger 63
fcbSetUserDefinedCardid 48
fcbTransmit (Obsolete) 93
fcbTransmitSymbol (Obsolete) 94
fcbTrigger (Obsolete) 106
fcFreeMemory 34
fcGetErrorCode 31
fcGetErrorText 32
fcGetErrorType 32

Functions CAN
fcbCANGetCcState 136
fcbCANGetMessageBuffer 143
fcbCANMonitoringStart 134
fcbCANMonitoringStop 135
fcbCANSetCcConfiguration 142
fcbCANSetMessageBuffer 143
fcbCANTransmit 144

Functions Cyclone Il (SE)

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 177 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

fcbConfigureMessageBufferSelfSynchronizatio
n 146

fcbGetCcMessageBufferSelfSynchronization
148

fcbReconfigureMessageBufferSelfSynchronizat
ion 147

fcbReinitializeCcMessageBufferSelfSynchroniz
ation 148

fcbResetCcMessageBuffersSelfSynchronizatio
n 149

fcbTransmitSelfSynchronization 149

Functions FlexRay

fcbFRCalculateMacrotickOffset 128
fcbFRConfigureMessageBuffer 122
fcbFRGetCcConfiguration 121
fcoFRGetCcRegister 118
fcbFRGetCCState 110
fcbFRGetCcTimerConfig 127
fcbFRGetMessageBuffer 124
fcbFRGetTransceiverState 111
fcboFRMonitoringStart 108
fcboFRMonitoringStop 109
fcbFRReconfigureMessageBuffer 123
fcbFRresetMessageBuffers 125
fcbFRSetCcConfiguration 120
fcbFRSetCcConfigurationCANdb 119
fcbFRSetCcConfigurationChi 118
fcbFRSetCcRegister 117
fcbFRSetCcTimerConfig 127
fcboFRSetHardwareAcceptanceFilter 126
fcbFRSetSoftwareAcceptanceFilter 125
fcbFRSetTransceiverState 110
fcbFRTransmit 129
fcbFRTransmitSymbol 130
fcbSetEventHandleV2 65

Functions PMC

fcbGetCclndex (Obsolete) 156
fcbSetCclndex (Obsolete) 155

Functions PMC (Il)

fcbConfigureMessageBufferSelfSynchronizatio
n 146

fcbGetBusTermination 153

fcbGetCcMessageBufferSelfSynchronization
148

fcbReconfigureMessageBufferSelfSynchronizat
ion 147

fcbReinitializeCcMessageBufferSelfSynchroniz
ation 148

fcbResetCcMessageBuffersSelfSynchronizatio
n 149

fcbSetBusTermination 152

fcbTransmitSelfSynchronization 149

fcTriggerConfigurationEx 154

Linux
fcbEventHandleSemaphore 157

Memory Handling 33

Multithreading 19

NFI 69, 71

Packet Types
fcCANErrorPacket 78
fcCANPacket 77
fcErrorPacket 73
fcFlexRayFrame 68
fcInfoPacket 67
fcNMVectorPacket 75
fcNotificationPacket 76
fcPacket 79
fcStatusPacket 75
fcTriggerExInfoPacket 76
fcTriggerinfoPacket (Obsolete) 105
fcTxAcknowledgePacket 70

STARTUP 69

Structures
fcCANErrorPacket 78
fcCANPacket 77
fcCcTimerCfg 56
fcErrorPacket 73
fcFlexRayFrame 68
fcinfo (Obsolete) 85
fcInfoPacket 67
fcinfoV2 (Obsolete) 86
fcMsgBufCfg 55
fcMsgBufCfgFifo 52
fcMsgBufCfgRx 53
fcMsgBufCfgTx 54
fcNMVectorPacket 75
fcNotificationPacket 76
fcNumberCC 40
fcPacket 79
fcStatusPacket 75
fcStatusWakeuplinfo 74
fcTriggerCfg (Obsolete) 104
fcTriggerCfgHardware (Obsolete) 1

03

fcTriggerCfgSoftware (Obsolete) 104

fcTriggerConfigurationEx 60
fcTriggerExInfoPacket 76
fcTriggerinfoPacket (Obsolete) 105
fcTxAcknowledgePacket 70
fcVersion (OBSOLETE) 87
fcVersionCC 41
fcVersionNumber 41
Structures CAN
fcCANBuUfCfg 141
fcCANBufCfgRemoteRx 139
fcCANBufCfgRemoteTx 140
fcCANBuUfCfgRx 138

ID 69
Installation 15
Integration 16, 21

fcCANBuUfCfgRxAIl 137
fcCANBuUfCfgTx 138
fcCANCcConfig 141

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 178 of 180

3-0009-0S01-D03_API Documentation_D1V12-F.doc

Structures FlexRay
fcFRCcConfig 112

Support 14

SYNC 69

Thread Safety 19

Trigger
fcbSetTrigger 63
fcbTrigger (Obsolete) 106
fcTriggerConditionEx 62
fcTriggerConditionPMC 154
fcTriggerConfigurationEx 60
fcTriggerMode (Obsolete) 106

Trigger configuration 60

Type definitions
fcByte 34
fcDword 35
fcError 30
fcHandle 34
fcQuad 35
fcWord 35

VxWorks

fcbMonitoringStart 168
fcbMonitoringStop 169
fcbReceive 170
fcbSetEventHandle 170
fcbSetNotificationTypeCount 173
fcbSetPacketGeneration 172
fcbSetReceiveMemorySize 172
fcDrvExit 161

fcDrvinit 161

fcNotificationType 163

fcPacket 165

fcPacketType 165
fcTriggerConfigurationEx 162
fcTriggerExInfoPacket 164
fcVersion 162

Not supported functions 168

Not supported type definitions 161

Xenomai

fcbWaitForEvent (Obsolete) 160
fcbWaitForEventV2 159

Copyright 2009 Eberspacher Electronics GmbH & Co. KG

Page 179 of 180

www.eberspaecher.com/electronics

Eberspéacher Electronics

GmbH & Co. KG

Robert-Bosch-Str. 6

73037 Goppingen

Phone +49 7161 9559-0

Fax +49 7161 9559-455
ebel-info@eberspaecher.com
www.eberspaecher.com/electronics

A1\

Eberspdcher

	1 General
	1.1 Intended use
	1.2 User Group
	1.3 Pictograms
	1.4 Meaning of text styles

	2 Overview
	2.1 Support

	3 Getting Started
	3.1 Installation
	3.2 Integration
	3.2.1 Calling Convention
	3.2.2 Multithreading

	3.3 Basic Workflow
	3.3.1 Setting up the project
	3.3.2 Get the installed FlexCards
	3.3.3 Open a connection
	3.3.4 Configure the FlexCard
	3.3.5 Start and Stop a measurement
	3.3.6 Receive FlexRay Frames
	3.3.7 Transmit FlexRay Frames
	3.3.8 Close a connection

	4 API Description
	4.1 General
	4.2 Overview changes
	4.2.1 From S1V0-F to S2V0-F
	4.2.2 From S2V0-F to S2V2-F
	4.2.3 From S2V2-F to S3V0-F
	4.2.4 From S3V0-F to S4V0-F
	4.2.5 From S4V0-F to S4V2-F
	4.2.6 From S4V2-F to S5V1-F

	4.3 Error Handling
	4.3.1 Type definitions
	4.3.1.1 fcError

	4.3.2 Enumerations
	4.3.2.1 fcErrorCode
	4.3.2.2 fcErrorType

	4.3.3 fcGetErrorCode
	4.3.4 fcGetErrorType
	4.3.5 fcGetErrorText

	4.4 Memory Handling
	4.4.1 Enumerations
	4.4.1.1 fcMemoryType

	4.4.2 fcFreeMemory

	4.5 Initialization
	4.5.1 Type definitions
	4.5.1.1 fcHandle
	4.5.1.2 fcByte
	4.5.1.3 fcWord
	4.5.1.4 fcDword
	4.5.1.5 fcQuad

	4.5.2 Enumerations
	4.5.2.1 fcBusType
	4.5.2.2 fcChannel
	4.5.2.3 fcCC
	4.5.2.4 fcState
	4.5.2.5 fcWakeupStatus
	4.5.2.6 fcTransceiverState
	4.5.2.7 fcSymbolType
	4.5.2.8 fcCCType
	4.5.2.9 fcMonitoringModes
	4.5.2.10 fcFlexCardDeviceId

	4.5.3 Structures
	4.5.3.1 fcNumberCC
	4.5.3.2 fcVersionCC
	4.5.3.3 fcVersionNumber
	4.5.3.4 fcInfoHw
	4.5.3.5 fcInfoSw
	4.5.3.6 fcInfoHwSw

	4.5.4 fcbGetEnumFlexCardsV3
	4.5.5 fcbCheckVersion
	4.5.6 fcbOpen
	4.5.7 fcbClose
	4.5.8 fcbGetInfoFlexCard
	4.5.9 fcbSetUserDefinedCardId
	4.5.10 fcbGetUserDefinedCardId

	4.6 Configuration
	4.6.1 Constants
	4.6.1.1 fcPayloadMaximum

	4.6.2 Enumerations
	4.6.2.1 fcMsgBufType
	4.6.2.2 fcMsgBufTxMode
	4.6.2.3 fcCyclePos

	4.6.3 Structures
	4.6.3.1 fcMsgBufCfgFifo
	4.6.3.2 fcMsgBufCfgRx
	4.6.3.3 fcMsgBufCfgTx
	4.6.3.4 fcMsgBufCfg
	4.6.3.5 fcCcTimerCfg

	4.6.4 fcbReinitializeCcMessageBuffer
	4.6.5 fcbGetNumberCcs
	4.6.6 fcbSetContinueOnPacketOverflow
	4.6.7 fcbGetCurrentTimeStamp
	4.6.8 fcbResetTimestamp

	4.7 Trigger configuration
	4.7.1 Structures
	4.7.1.1 fcTriggerConfigurationEx

	4.7.2 Enumerations
	4.7.2.1 fcTriggerConditionEx

	4.7.3 fcbSetTrigger

	4.8 Event
	4.8.1 Enumerations
	4.8.1.1 fcNotificationType

	4.8.2 fcbSetEventHandleV2
	4.8.3 fcbSetTimer
	4.8.4 fcbNotificationPacket

	4.9 Receive
	4.9.1 Typedefinitions
	4.9.1.1 fcInfoPacket
	4.9.1.2 fcFlexRayFrame
	4.9.1.3 fcTxAcknowledgePacket
	4.9.1.4 fcErrPOCErrorModeChangedInfo
	4.9.1.5 fcErrSyncFramesInfo
	4.9.1.6 fcErrClockCorrectionFailureInfo
	4.9.1.7 fcErrSlotInfo
	4.9.1.8 fcErrorPacket
	4.9.1.9 fcStatusWakeupInfo
	4.9.1.10 fcStatusPacket
	4.9.1.11 fcNMVectorPacket
	4.9.1.12 fcNotificationPacket
	4.9.1.13 fcTriggerExInfoPacket
	4.9.1.14 fcCANPacket
	4.9.1.15 fcCANErrorPacket
	4.9.1.16 fcPacket

	4.9.2 Enumerations
	4.9.2.1 fcPacketType
	4.9.2.2 fcErrorPacketFlag
	4.9.2.3 fcStatusPacketFlag
	4.9.2.4 fcCANErrorType

	4.9.3 fcbReceive

	4.10 Obsolete
	4.10.1 fcInfo (Obsolete)
	4.10.2 fcInfoV2 (Obsolete)
	4.10.3 fcVersion (OBSOLETE)
	4.10.4 fcbGetEnumFlexCards (Obsolete)
	4.10.5 fcbGetEnumFlexCardsV2 (Obsolete)
	4.10.6 fcbMonitoringStart (Obsolete)
	4.10.7 fcbMonitoringStop (Obsolete)
	4.10.8 fcbGetCcState (Obsolete)
	4.10.9 fcbSetTransceiverState (Obsolete)
	4.10.10 fcbGetTransceiverState (Obsolete)
	4.10.11 fcbSetEventHandle (Obsolete)
	4.10.12 fcbTransmit (Obsolete)
	4.10.13 fcbTransmitSymbol (Obsolete)
	4.10.14 fcbSetCcRegister (Obsolete)
	4.10.15 fcbGetCcRegister (Obsolete)
	4.10.16 fcbChiCcConfiguration (Obsolete)
	4.10.17 fcbCanDbCcConfiguration (Obsolete)
	4.10.18 fcbConfigureMessageBuffer (Obsolete)
	4.10.19 fcbReconfigureMessageBuffer (Obsolete)
	4.10.20 fcbGetCcMessageBuffer (Obsolete)
	4.10.21 fcbResetCcMessageBuffer (Obsolete)
	4.10.22 fcbFilter (Obsolete)
	4.10.23 fcbSetCcTimerConfig (Obsolete)
	4.10.24 fcbGetCcTimerConfig (Obsolete)
	4.10.25 fcbCalculateMacrotickOffset (Obsolete)
	4.10.26 Trigger configuration (Obsolete)
	4.10.27 Typedefinitions (Obsolete)
	4.10.27.1 fcTriggerCfgHardware (Obsolete)
	4.10.27.2 fcTriggerCfgSoftware (Obsolete)
	4.10.27.3 fcTriggerCfg (Obsolete)
	4.10.27.4 fcTriggerInfoPacket (Obsolete)

	4.10.28 Enumerations (Obsolete)
	4.10.28.1 fcTriggerCondition (Obsolete)
	4.10.28.2 fcTriggerType (Obsolete)
	4.10.28.3 fcTriggerMode (Obsolete)

	4.10.29 fcbTrigger (Obsolete)

	5 Additional FlexRay API
	5.1 Initialization
	5.1.1 fcbFRMonitoringStart
	5.1.2 fcbFRMonitoringStop
	5.1.3 fcbFRGetCCState
	5.1.4 fcbFRSetTransceiverState
	5.1.5 fcbFRGetTransceiverState

	5.2 Configuration
	5.2.1 Enumerations
	5.2.1.1 fcFRBaudRate

	5.2.2 Structures
	5.2.2.1 fcFRCcConfig

	5.2.3 fcbFRSetCcRegister
	5.2.4 fcbFRGetCcRegister
	5.2.5 fcbFRSetCcConfigurationChi
	5.2.6 fcbFRSetCcConfigurationCANdb
	5.2.7 fcbFRSetCcConfiguration
	5.2.8 fcbFRGetCcConfiguration
	5.2.9 fcbFRConfigureMessageBuffer
	5.2.10 fcbFRReconfigureMessageBuffer
	5.2.11 fcbFRGetMessageBuffer
	5.2.12 fcbFRResetMessageBuffers
	5.2.13 fcbFRSetSoftwareAcceptanceFilter
	5.2.14 fcbFRSetHardwareAcceptanceFilter
	5.2.15 fcbFRSetCcTimerConfig
	5.2.16 fcbFRGetCcTimerConfig
	5.2.17 fcbFRCalculateMacrotickOffset

	5.3 Transmit
	5.3.1 fcbFRTransmit
	5.3.2 fcbFRTransmitSymbol

	6 Optional CAN API
	6.1 Basic CAN Workflow
	6.2 Initialization
	6.2.1 Enumerations
	6.2.1.1 fcCANCcState
	6.2.1.2 fcCANMonitoringMode

	6.2.2 fcbCANMonitoringStart
	6.2.3 fcbCANMonitoringStop
	6.2.4 fcbCANGetCcState

	6.3 Configuration
	6.3.1 Enumerations
	6.3.1.1 fcCANBufCfgType
	6.3.1.2 fcCANBufCfgRxAllCondition

	6.3.2 Structures
	6.3.2.1 fcCANBufCfgRxAll
	6.3.2.2 fcCANBufCfgRx
	6.3.2.3 fcCANBufCfgTx
	6.3.2.4 fcCANBufCfgRemoteRx
	6.3.2.5 fcCANBufCfgRemoteTx
	6.3.2.6 fcCANBufCfg
	6.3.2.7 fcCANCcConfig

	6.3.3 fcbCANSetCcConfiguration
	6.3.4 fcbCANSetMessageBuffer
	6.3.5 fcbCANGetMessageBuffer

	6.4 Transmit
	6.4.1 fcbCANTransmit

	7 Additional Cyclone II (SE) and PMC (II) API
	7.1 Self synchronization
	7.1.1 Configuration
	7.1.1.1 fcbConfigureMessageBufferSelfSynchronization
	7.1.1.2 fcbReconfigureMessageBufferSelfSynchronization
	7.1.1.3 fcbReinitializeCcMessageBufferSelfSynchronization
	7.1.1.4 fcbGetCcMessageBufferSelfSynchronization
	7.1.1.5 fcbResetCcMessageBuffersSelfSynchronization

	7.1.2 Transmit
	7.1.2.1 fcbTransmitSelfSynchronization

	8 Additional PMC (II) card API
	8.1 Enumerations
	8.1.1 fcBusChannel

	8.2 fcbSetBusTermination
	8.3 fcbGetBusTermination
	8.4 fcTriggerConfigurationEx
	8.4.1.1 fcTriggerConditionPMC

	8.5 Obsolete
	8.5.1 fcbSetCcIndex (Obsolete)
	8.5.2 fcbGetCcIndex (Obsolete)

	9 Additional Linux API
	9.1 Integration
	9.2 Event
	9.2.1 fcbSetEventHandleSemaphore

	10 Additional Xenomai API
	10.1 Integration
	10.2 Event
	10.2.1 fcbWaitForEventV2

	10.3 Obsolete
	10.3.1 fcbWaitForEvent (Obsolete)

	11 Additional VxWorks API
	11.1 Integration
	11.1.1 fcDrvInit
	11.1.2 fcDrvExit

	11.2 Restrictions / Changes
	11.2.1 Not supported type definitions
	11.2.2 Changed type definitions
	11.2.2.1 fcVersion
	11.2.2.2 fcTriggerConfigurationEx
	11.2.2.3 fcNotificationType
	11.2.2.4 fcTriggerExInfoPacket
	11.2.2.5 fcPacketType
	11.2.2.6 fcPacket
	11.2.2.7 fcState

	11.2.3 Not supported functions
	11.2.4 Changed Functions
	11.2.4.1 fcbMonitoringStart
	11.2.4.2 fcbMonitoringStop
	11.2.4.3 fcbSetEventHandle
	11.2.4.4 fcbReceive

	11.3 Configuration
	11.3.1 fcbSetPacketGeneration
	11.3.2 fcbSetReceiveMemorySize

	11.4 Event
	11.4.1 fcbSetNotificationTypeCount

	12 Power Management
	13 Tracing
	13.1 Overview
	13.2 Limitation

	14 Appendix
	14.1 Bibliography
	14.2 Abbreviations
	14.3 Glossary
	14.4 List of Figures
	Index

